Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Framework for Simulation-Driven Design of Stamping Dies Considering Elastic Die and Press Deformations
Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.ORCID iD: 0000-0002-6526-976X
Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
2017 (English)In: PROCEEDINGS OF THE 20TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2017) / [ed] Brabazon D.,Ul Ahad I.,Naher S., American Institute of Physics (AIP), 2017, Vol. 1896, article id 010001Conference paper, Published paper (Refereed)
Abstract [en]

Sheet metal forming (SMF) simulations are used extensively throughout the development phase of industrialstamping dies. In these SMF simulations, the die and press are normally considered as rigid. Previous research has howevershown that elastic deformation in these parts has a significant negative impact on process performance. This paperdemonstrates methods for counteracting these negative effects, with a high potential for improved production support anda reduced lead time through a shorter try-out process. A structural finite element model (FE-model) of a simplified die isstudied. To account for elastic deformation, the blankholder surfaces are first virtually reworked by adjusting the nodalpositions on the die surfaces attaining a pressure distribution in accordance to the design phase SMF simulations with rigidsurfaces. The elastic FE-model with reworked surfaces then represents a stamping die in running production. The die isnow assumed to be exposed to changed process conditions giving an undesired blankholder pressure distribution. Thechanged process conditions could for example be due to a change of press line. An optimization routine is applied tocompensate the negative effects of the new process conditions. The optimization routine uses the contact forces acting onthe shims of the spacer blocks and cushion pins as optimization variables. A flexible simulation environment usingMATLAB and ABAQUS is used. ABAQUS is executed from MATLAB and the results are automatically read back intoMATLAB. The suggested optimization procedure reaches a pressure distribution very similar to the initial distributionassumed to be the optimum, and thereby verifying the method. Further research is needed for a method to transform thecalculated forces in the optimization routine back to shims thicknesses. Furthermore, the optimization time is relativelylong and needs to be reduced in the future for the method to reach its full potential.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2017. Vol. 1896, article id 010001
Series
AIP Conference Proceedings, ISSN 0094-243X
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:bth-15392DOI: 10.1063/1.5008124ISI: 000419825000167ISBN: 9780735415805 (print)OAI: oai:DiVA.org:bth-15392DiVA, id: diva2:1153437
Conference
20th International ESAFORM Conference on Material Forming, Dublin
Funder
VINNOVA, 2016-03324Available from: 2017-10-30 Created: 2017-10-30 Last updated: 2020-08-24Bibliographically approved
In thesis
1. Elastic Press and Die Deformations in Sheet Metal Forming Simulations
Open this publication in new window or tab >>Elastic Press and Die Deformations in Sheet Metal Forming Simulations
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Never before has the car industry been as challenging, interesting, and demanding as it is today. New and advanced techniques are being continuously introduced, which has led to increasing competition in an almost ever-expanding car market. As the pace and complexity heightens in the car market, manufacturing processes must advance at an equal speed.

An important manufacturing process within the automotive industry, and the focus of this thesis, is sheet metal forming (SMF). Sheet metal forming is used to create door panels, structural beams, and trunk lids, among other parts, by forming sheets of metal in press lines with stamping dies. The SMF process has been simulated for the past couple of decades with finite element (FE) simulations, whereby one can predict factors such as shape, strains, thickness, springback, risk of failure, and wrinkles. A factor that most SMF simulations do not currently include is the die and press elasticity. This factor is handled manually during the die tryout phase, which is often long and expensive.

The importance of accurately representing press and die elasticity in SMF simulations is the focus of this research project. The research objective is to achieve virtual tryout and improved production support through SMF simulations that consider elastic die and press deformations. Loading a die with production forces and including the deformations in SMF simulations achieves a reliable result. It is impossible to achieve accurate simulation results without including the die deformations.

This thesis also describes numerical methods for optimizing and compensating tool surfaces against press and die deformations. In order for these compensations to be valid, it is imperative to accurately represent dies and presses. A method of measuring and inverse modeling the elasticity of a press table has been developed and is based on digital image correlation (DIC) measurements and structural optimization with FE software.

Optimization, structural analysis, and SMF simulations together with experimental measurements have immense potential to improve simulation results and significantly reduce the lead time of stamping dies. Last but not least, improved production support and die design are other areas that can benefit from these tools.

Abstract [sv]

Aldrig tidigare har bilindustrin varit så utmanande, intressant och spännande som idag. Ny och avancerad teknik introduceras i en allt snabbare takt vilket leder till ständigt ökande konkurrens på en, nästan ständigt, ökande bilmarknad. Den ständigt ökande komplexiteten ställer även krav på tillverkningsprocesserna.

En viktig process, som denna licentiatuppsats fokuserar på, är pressning av plåt. Tillverkningstekniken används för att forma plåtar till dörrpaneler, strukturbalkar, motorhuvar, etc. Plåtar formas med hjälp av pressverktyg monterade i plåtformningspressar. Plåtformningsprocessen simuleras sedan ett par decennium tillbaka med Finita Element (FE) simuleringar. Man kan på så sätt prediktera form, töjningar, tjocklek, återfjädring, rynkor, risk för försträckning och sprickor m.m. En faktor som för tillfället inte inkluderas i näst intill alla plåtformningssimuleringar är elastiska press- och verktygsdeformationer. Detta hanteras istället manuellt under, den oftast långa och dyra, inprovningsfasen.

Detta projekt har visat på vikten av att representera press och verktygsdeformationer i plåtformningssimuleringar. Detta demonstreras genom en analys av ett verkligt pressverktyg som belastas med produktionskrafter. Det är inte möjligt att uppnå bra simuleringsresultat utan att inkludera verktygsdeformationer i simuleringsmodellen.

Uppsatsen beskriver även numeriska metoder för att optimera och kompensera verktygsytor mot press och verktygsdeformationer. För att dessa kompenseringar ska stämma är det viktigt att man representerar både verktyg och press på ett korrekt sätt. Förslag på en metod för att mäta och inversmodellera pressdeformationer har utvecklats, metoden är baserad på mätningar med DIC-systemet ARAMIS och optimering i FE-mjukvaror.

Optimering, strukturanalys, och plåtformningsanalys tillsammans med experimentella mätningar har en stor potential att förbättra plåtformningssimuleringar samt reducera ledtiden för pressverktyg. Sist men inte minst, andra positiva effekter är en enklare och smidigare konstruktionsprocess och förbättrad produktionssupport.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2017
Series
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 2
Keywords
Sheet Metal Forming, Stamping Die, Stamping Press, Structural Analysis, Finite Element Simulation, Optimization, Digital Image Correlation, Inverse Modeling
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:bth-15481 (URN)978-91-7295-345-1 (ISBN)
Presentation
2017-12-14, 10:00 (Swedish)
Opponent
Supervisors
Funder
VINNOVA, 2016-03324
Available from: 2017-11-10 Created: 2017-11-10 Last updated: 2017-12-08Bibliographically approved
2. Towards Virtual Tryout and Digital Twins: Enhanced Modeling of Elastic Dies, Sheet Materials, and Friction in Sheet Metal Forming
Open this publication in new window or tab >>Towards Virtual Tryout and Digital Twins: Enhanced Modeling of Elastic Dies, Sheet Materials, and Friction in Sheet Metal Forming
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Competition and complexity in the global car market are continuously increasing. To gain an edge in the market while making a profit, each competitor in the market needs a strong focus on technology development. Such a focus will increase the value of the product for the customers. On top of the challenges of developing the technical content of the cars, it is equally important to develop the manufacturing processes. This will enable the production of technically advanced and attractive products at a competitive cost.

An important manufacturing process within the automotive industry, and the focus of this PhD thesis, is sheet metal forming (SMF). The SMF process has been simulated for the past few decades with finite element (FE) simulations, whereby factors such as shape, strains, thickness, springback, risk of failure, and wrinkles can be predicted. A factor that most SMF simulations do not currently include is die and press elasticity, limiting the reliability of SMF simulations for virtual die tryout and digital twins. This factor is instead handled manually during the die tryout, which is time-consuming and expensive.

The importance of accurately representing press and die elasticity in SMF simulations is the focus of this research project. The objective is to achieve virtual tryout and production support through SMF simulations that consider elastic die and press deformations. Accurate simulations of die tryout, or dies in running production, are found to be impossible without the inclusion of reliable representations of elastic dies and presses.

Accurate CAD models of stamping dies are common. Strategies are presented for how to include them in SMF simulations models that are easy to set up and fast to solve. Full representations of presses are rarer. Methods for measuring and inverse modeling the elasticity of presses are therefore presented together with an overview from the literature of other methods. A unified method that is reliable and cost-efficient for the stamping industry is of high interest.

SMF simulations with elastic dies will only yield accurate predictions if reliable models of sheet materials and lubrication systems are included. Friction in particular is highly dependent on die deformations since contact pressure is an important parameter in determining the friction level. Reliable models for both friction and sheet materials are dependent on accurate experimental data and characterization methods.

Including elastic die and press deformations in SMF simulations, together with reliable representations of friction and sheet materials, has immense potential to reduce the lead time of stamping dies. The simulation methods that include elasticity will also be vital for more accurate digital twins of press lines.

Abstract [sv]

Konkurrens och komplexitet ökar ständigt inom den globala bilmarknaden. För att skapa konkurrensfördelar behöver företag som verkar på marknaden fokusera på teknikutveckling, vilket i sin tur ökar produkternas värde för konsumenterna. Samtidigt som man utvecklar det tekniska innehållet i sina produkter så är det lika viktigt att utveckla sina tillverkningsprocesser. Välutvecklade tillverkningsprocesser möjliggör produktion av tekniskt avancerade, och attraktiva produkter, till en konkurrenskraftig kostnad.

En viktig process, som denna avhandling fokuserar på, är pressning av plåt. Plåtformningsprocessen simuleras sedan ett par decennium tillbaka med Finita Element (FE) simuleringar. Man kan på så sätt prediktera form, töjningar, tjocklek, återfjädring, rynkor, risk för försträckning och sprickor m.m. En faktor som för tillfället inte inkluderas i näst intill alla plåtformningssimuleringar är elastiska press- och verktygsdeformationer. Detta begränsar möjligheterna att använda plåtformningssimulering för virtuell inprovning och att skapa pålitliga digitala tvillingar. Elastiska deformationer hanteras istället manuellt under, den oftast långa och dyra, inprovningsfasen.

Detta projekt visar på vikten av att inkludera press- och verktygsdeformationer genom simuleringar av verkliga pressverktyg. I de simulerade fallen är det inte möjligt att uppnå bra resultat för inprovning och produktionssupport utan att inkludera verktygsdeformationer i modellen.

CAD-modeller finns för nästan alla pressverktyg idag. Strategier för att inkludera elastiska verktygsgeometrier i simuleringar presenteras. Modellerna är enkla att skapa och snabba att lösa. Kompletta CAD-modeller av pressar är inte lika vanligt. Metoder för att mäta upp pressar och inkludera i simuleringar är därför också presenterade, tillsammans med exempel på andra metoder från vetenskaplig litteratur. En standardiserad metod för plåtformningsindustrin är av intresse.

Simuleringar med elastiska verktyg ger endast pålitliga resultat om plåt och friktion representeras på ett bra sätt. Speciellt friktion är starkt beroende av verktygsdeformationer då kontakttryck är en viktig faktor i friktionsmodeller. Material- och friktionsmodeller vilar på väl fungerande metoder för karaktärisering utifrån god experimentell data.

Plåtformningssimuleringar med elastiska verktyg, tillsammans med pålitliga modeller av plåtmaterial och friktionssystem, har en stor potential att reducera ledtiden för pressverktyg. Dessa metoder kommer också att vara viktiga i skapandet av digitala tvillingar av verktyg och pressar.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2020
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 7
Keywords
Sheet Metal Forming, Stamping Die, Virtual Tryout, Digital Twin, Stamping Press, Structural Analysis, Finite Element Simulation, Optimization, Digital Image Correlation, Inverse Modeling
National Category
Mechanical Engineering
Research subject
Mechanical Engineering
Identifiers
urn:nbn:se:bth-20047 (URN)978-91-7295-406-9 (ISBN)
Public defence
2020-09-22, J1630, 13:00 (English)
Opponent
Supervisors
Funder
Vinnova, 2016-03324Vinnova, 2018-03331
Available from: 2020-08-25 Created: 2020-08-24 Last updated: 2020-12-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Wall, JohanSigvant, Mats

Search in DiVA

By author/editor
Pilthammar, JohanWall, JohanSigvant, Mats
By organisation
Department of Mechanical Engineering
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 523 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf