Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Short-Term Traffic Forecasting Using Self-Adjusting k-Nearest Neighbours
Blekinge Institute of Technology, Faculty of Computing, Department of Creative Technologies.ORCID iD: 0000-0001-5824-425X
Blekinge Institute of Technology, Faculty of Computing, Department of Creative Technologies.
Blekinge Institute of Technology, Faculty of Computing, Department of Creative Technologies.ORCID iD: 0000-0003-0891-2859
Blekinge Institute of Technology, Faculty of Computing, Department of Creative Technologies.
2018 (English)In: IET Intelligent Transport Systems, ISSN 1751-956X, E-ISSN 1751-9578, Vol. 12, no 1, p. 41-48Article in journal (Refereed) Published
Abstract [en]

Short-term traffic forecasting is becoming more important in intelligent transportation systems. The k-nearest neighbours (kNN) method is widely used for short-term traffic forecasting.However, kNN parameters self-adjustment has been a problem due to dynamic traffic characteristics. This paper proposes a fully automatic dynamic procedure kNN (DP-kNN) that makes the kNN parameters self-adjustable and robust without predefined models or training. We used realworld data with more than one-year traffic records to conduct experiments. The results show that DP-kNN can perform better than manually adjusted kNN and other benchmarking methods with regards to accuracy on average. This study also discusses the difference between holiday and workday traffic prediction as well as the usage of neighbour distance measurement.

Place, publisher, year, edition, pages
Institution of Engineering and Technology, 2018. Vol. 12, no 1, p. 41-48
Keywords [en]
intelligent transportation systems; short-term traffic forecasting; road traffic; DP-kNN; dynamic procedure kNN; self-adjusting k-nearest neighbours
National Category
Computer Sciences Transport Systems and Logistics
Identifiers
URN: urn:nbn:se:bth-15727DOI: 10.1049/iet-its.2016.0263ISI: 000426045200006OAI: oai:DiVA.org:bth-15727DiVA, id: diva2:1172050
Available from: 2018-01-09 Created: 2018-01-09 Last updated: 2018-11-01Bibliographically approved
In thesis
1. Automated Traffic Time Series Prediction
Open this publication in new window or tab >>Automated Traffic Time Series Prediction
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Intelligent transportation systems (ITS) are becoming more and more effective. Robust and accurate short-term traffic prediction plays a key role in modern ITS and demands continuous improvement. Benefiting from better data collection and storage strategies, a huge amount of traffic data is archived which can be used for this purpose especially by using machine learning.

For the data preprocessing stage, despite the amount of data available, missing data records and their messy labels are two problems that prevent many prediction algorithms in ITS from working effectively and smoothly. For the prediction stage, though there are many prediction algorithms, higher accuracy and more automated procedures are needed.

Considering both preprocessing and prediction studies, one widely used algorithm is k-nearest neighbours (kNN) which has shown high accuracy and efficiency. However, the general kNN is designed for matrix instead of time series which lacks the use of time series characteristics. Choosing the right parameter values for kNN is problematic due to dynamic traffic characteristics. This thesis analyses kNN based algorithms and improves the prediction accuracy with better parameter handling using time series characteristics.

Specifically, for the data preprocessing stage, this work introduces gap-sensitive windowed kNN (GSW-kNN) imputation. Besides, a Mahalanobis distance-based algorithm is improved to support correcting and complementing label information. Later, several automated and dynamic procedures are proposed and different strategies for making use of data and parameters are also compared.

Two real-world datasets are used to conduct experiments in different papers. The results show that GSW-kNN imputation is 34% on average more accurate than benchmarking methods, and it is still robust even if the missing ratio increases to 90%. The Mahalanobis distance-based models efficiently correct and complement label information which is then used to fairly compare performance of algorithms. The proposed dynamic procedure (DP) performs better than manually adjusted kNN and other benchmarking methods in terms of accuracy on average. What is better, weighted parameter tuples (WPT) gives more accurate results than any human tuned parameters which cannot be achieved manually in practice. The experiments indicate that the relations among parameters are compound and the flow-aware strategy performs better than the time-aware one. Thus, it is suggested to consider all parameter strategies simultaneously as ensemble strategies especially by including window in flow-aware strategies.

In summary, this thesis improves the accuracy and automation level of short-term traffic prediction with proposed high-speed algorithms.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2018
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 10
Keywords
Machine Learning, Time Series, Traffic Engineering
National Category
Engineering and Technology
Identifiers
urn:nbn:se:bth-17210 (URN)978-91-7295-360-4 (ISBN)
Public defence
2018-11-30, J1650, Valhallav. 1, Karlskrona, 13:30 (English)
Opponent
Supervisors
Available from: 2018-11-02 Created: 2018-11-01 Last updated: 2018-11-09Bibliographically approved

Open Access in DiVA

fulltext(1071 kB)63 downloads
File information
File name FULLTEXT01.pdfFile size 1071 kBChecksum SHA-512
174150bb92f7bba4dd81105ec91f53f5a4405f0cb5a9437a5b1f27d37629f52d2ae94f4d9bc7f4072f44f246dd50b5873f2c8c5824abfb66bb448e0190f863e6
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Sun, BinCheng, WeiGoswami, PrashantBai, Guohua

Search in DiVA

By author/editor
Sun, BinCheng, WeiGoswami, PrashantBai, Guohua
By organisation
Department of Creative Technologies
In the same journal
IET Intelligent Transport Systems
Computer SciencesTransport Systems and Logistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 63 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 189 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf