Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Simulation Study of the Effect of Ionospheric Vertical Gradients on the Neutral Bending Angle Error for GNSS Radio Occultation
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.
Molflow, Gothenburg, SWE.
RUAG Space AB, SWE.
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.ORCID iD: 0000-0002-6643-312x
Show others and affiliations
2017 (English)In: Progress in Electromagnetics Research Symposium, IEEE , 2017, p. 1540-1545Conference paper, Published paper (Refereed)
Abstract [en]

Radio Occultation based on Global Navigation Satellite System signals (GNSS RO) is an increasingly important remote sensing technique. Its measurements are used to derive parameter of the Earth's atmosphere, e.g., pressure, temperature and humidity, with good accuracy. The systematic residual error present on the data processing is related to ionospheric conditions, such as the distribution of electrons and the resultant vertical gradient. This study investigates the relationship between these parameters and the residual ionospheric error (RIE) on the retrieved bending angle in the stratosphere. Chapman function combined to sinusoidal perturbations are used to model electron density profiles and compared to RO retrievals of the ionosphere to perform the investigation. The results confirmed that the major ionospheric influence on the retrieval error is related to the F-layer electron density peak, whereas small-scale vertical structures play a minor role.

Place, publisher, year, edition, pages
IEEE , 2017. p. 1540-1545
Series
Progress in Electromagnetics Research Symposium, ISSN 1559-9450
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:bth-16124ISI: 000428518301099ISBN: 978-1-5386-1211-8 (print)OAI: oai:DiVA.org:bth-16124DiVA, id: diva2:1201516
Conference
Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore
Available from: 2018-04-26 Created: 2018-04-26 Last updated: 2019-11-14Bibliographically approved
In thesis
1. Effects of Small-Scale Ionospheric Irregularities on GNSS Radio Occultation Signals: Evaluations Using Multiple Phase Screen Simulator
Open this publication in new window or tab >>Effects of Small-Scale Ionospheric Irregularities on GNSS Radio Occultation Signals: Evaluations Using Multiple Phase Screen Simulator
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Radio Occultation (RO) is a remote sensing technique which uses Global Navigation Satellite System (GNSS) signals tracked by a Low-Earth Orbit (LEO) satellite to sound the earth's atmosphere both in low (troposphere, stratosphere) and high (ionosphere) altitudes. GNSS-RO provides global coverage and SI traceable measurements of atmospheric data with high-vertical resolution. Refractivity, dry temperature, pressure and water vapour profiles retrieved from RO measurements have a relevant contribution in Numerical Weather Prediction (NWP) systems and in climate-monitoring.

Due to the partial propagation through the ionosphere, a systematic bias is added to the lower atmospheric data product. Most of this contribution is removed by a linear combination of data for two frequencies. In climatology studies, one can apply a second-order correction - so called κ-correction - which relies on a priori information on the conditions in the ionosphere. However, both approaches do not remove high-order terms in the error due to horizontal gradient and earth's geomagnetic fields. The remaining residual ionospheric error (RIE) and its systematic bias in RO atmospheric data is a well-known issue and its mitigation is an open research topic.

In this licentiate dissertation, the residual ionospheric error after the standard correction is evaluated with computational simulations using a wave optics propagator (WOP). Multiple Phase Screen (MPS) method is used to simulate occultation events in different ionospheric scenarios, e.g. quiet and disturbed conditions. Electron density profiles (EDP) assumed in simulations are either defined by analytical equations or measurements. The disturbed cases are modelled as small-scale irregularities within F-region in two different ways: as sinusoidal fluctuations; and by using a more complex approach, where the irregularities follow a single-slope power-law that yields moderate to strong scintillation in the signal amplitude. Possible errors in MPS simulations assuming long segment of orbit and ionosphere are also evaluated.

The results obtained with the sinusoidal disturbances show minor influence in the RIE after the standard correction, with the major part of the error due to the F-region peak. The implementation of the single-slope power-law is validated and the fluctuations obtained in simulation show good agreement to the ones observed in RO measurements. Finally, an alternative to overcome limitations in MPS simulations considering occultations with long segment of orbit and ionosphere is introduced and validated.

The small-scale irregularities modelled in F-region with the power-law can be added in simulations of a large dataset subjected to κ-correction, in order to evaluate the RIE bending angle and the consequences in atmospheric parameters, e.g. temperature.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2019
Series
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 16
Keywords
GNSS Radio Occultation (GNSS-RO); Ionosphere; Scintillation
National Category
Remote Sensing
Identifiers
urn:nbn:se:bth-18907 (URN)978-91-7295-392-5 (ISBN)
Presentation
2019-12-12, 08:30 (English)
Opponent
Supervisors
Projects
NRPF-3, Rymdstyrelsen, 241/15
Funder
Swedish National Space Board
Available from: 2019-11-15 Created: 2019-11-14 Last updated: 2019-12-18Bibliographically approved

Open Access in DiVA

fulltext(289 kB)34 downloads
File information
File name FULLTEXT01.pdfFile size 289 kBChecksum SHA-512
5e3acd782599837d6ea3fcee5234e03400c24d4d238b6d26b47b25435c9f61bb55d7815055bad6cf19a0680326095adf8988b6ec6ebb28be5fa8695dd01e036b
Type fulltextMimetype application/pdf

Authority records BETA

Pettersson, MatsVu, Viet Thuy

Search in DiVA

By author/editor
Barbosa, LudwigPettersson, MatsVu, Viet Thuy
By organisation
Department of Mathematics and Natural Sciences
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 34 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 163 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf