We introduce non-associative Ore extensions, S = R[X; sigma, delta], for any non-ssociative unital ring R and any additive maps sigma, delta : R -> R satisfying sigma(1) = 1 and delta(1) = 0. In the special case when delta is either left or right R-delta-linear, where R-delta = ker(delta), and R is delta-simple, i.e. {0} and R are the only delta-invariant ideals of R, we determine the ideal structure of the non-associative differential polynomial ring D = R[X; id(R),delta]. Namely, in that case, we show that all non-zero ideals of D are generated by monic polynomials in the center Z(D) of D. We also show that Z(D) = R-delta[p] for a monic p is an element of R-delta [X], unique up to addition of elements from Z(R)(delta) . Thereby, we generalize classical results by Amitsur on differential polynomial rings defined by derivations on associative and simple rings. Furthermore, we use the ideal structure of D to show that D is simple if and only if R is delta-simple and Z(D) equals the field R-delta boolean AND Z(R). This provides us with a non-associative generalization of a result by Oinert, Richter and Silve-strov. This result is in turn used to show a non-associative version of a classical result by Jordan concerning simplicity of D in the cases when the characteristic of the field R-delta boolean AND Z(R) is either zero or a prime. We use our findings to show simplicity results for both non-associative versions of Weyl algebras and non-associative differential polynomial rings defined by monoid/group actions on compact Hausdorff spaces.
open access