Open this publication in new window or tab >>2018 (English)In: Proceeding of the 3rd International Conference on Virtualization Application and Technology, 2018, , p. 6Conference paper, Published paper (Refereed)
Abstract [en]
Cloud computing promises customers the ondemand ability to scale in face of workload variations. There are different ways to accomplish scaling, one is vertical scaling and the other is horizontal scaling. The vertical scaling refers to buying more power (CPU, RAM), buying a more expensive and robust server, which is less challenging to implement but exponentially expensive. While, the horizontal scaling refers to adding more servers with less processor and RAM, which is usually cheaper overall and can scale very well. The majority of cloud providers prefer the horizontal scaling approach, and for them would be very important to know about the advantages and disadvantages of both technologies from the perspective of the application performance at scale. In this paper, we compare performance differences caused by scaling of the different virtualization technologies in terms of CPU utilization, latency, and the number of transactions per second. The workload is Apache Cassandra, which is a leading NoSQL distributed database for Big Data platforms. Our results show that running multiple instances of the Cassandra database concurrently, affected the performance of read and write operations differently; for both VMware and Docker, the maximum number of read operations was reduced when we ran several instances concurrently, whereas the maximum number of write operations increased when we ran instances concurrently.
Publisher
p. 6
Keywords
Cassandra; Cloud computing; Docker container; Horizontal scaling; NoSQL database; Performance comparison; Virtualization; VMware virtual machine
National Category
Computer Systems
Identifiers
urn:nbn:se:bth-17212 (URN)
Conference
3rd International Conference on Virtualization Application and Technology (ICVAT 2018, Nov.16-18, Sanya, China
2018-11-022018-11-022021-07-26Bibliographically approved