Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt218",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1013",{id:"formSmash:j_idt1013",widgetVar:"widget_formSmash_j_idt1013",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full texthttps://arxiv.org/abs/1809.04935
#### Authority records

Lännström, Daniel
#### Search in DiVA

##### By author/editor

Lännström, Daniel
##### By organisation

Department of Mathematics and Natural Sciences
##### In the same journal

Journal of Algebra and its Applications
On the subject

Algebra and Logic
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1209",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[1,1,2,1,2,2,1,2,6,2]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:10,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1304127'}],ticks:["Aug -22","Oct -22","Nov -22","Dec -22","Jan -23","Feb -23","Apr -23","May -23","Jun -23","Nov -23"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 399 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1302",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt197",{id:"formSmash:upper:j_idt197",widgetVar:"widget_formSmash_upper_j_idt197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt198_j_idt200",{id:"formSmash:upper:j_idt198:j_idt200",widgetVar:"widget_formSmash_upper_j_idt198_j_idt200",target:"formSmash:upper:j_idt198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Induced quotient group gradings of epsilon-strongly graded ringsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2020 (English)In: Journal of Algebra and its Applications, ISSN 0219-4988, E-ISSN 1793-6829, Vol. 9, no 9, article id 2050162Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2020. Vol. 9, no 9, article id 2050162
##### Keywords [en]

group graded ring, epsilon-strongly graded ring, Leavitt path algebra, partial skew group ring.
##### National Category

Algebra and Logic
##### Identifiers

URN: urn:nbn:se:bth-17806DOI: 10.1142/S0219498820501625ISI: 000563009600001OAI: oai:DiVA.org:bth-17806DiVA, id: diva2:1304127
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt494",{id:"formSmash:j_idt494",widgetVar:"widget_formSmash_j_idt494",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt500",{id:"formSmash:j_idt500",widgetVar:"widget_formSmash_j_idt500",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt506",{id:"formSmash:j_idt506",widgetVar:"widget_formSmash_j_idt506",multiple:true});
##### Funder

The Crafoord Foundation, 20170843
##### Note

##### In thesis

Let $G$ be a group and let $S=\bigoplus_{g \in G} S_g$ be a $G$-graded ring. Given a normal subgroup $N$ of $G$, there is a naturally induced $G/N$-grading of $S$. It is well-known that if $S$ is strongly $G$-graded, then the induced $G/N$-grading is strong for any $N$. The class of epsilon-strongly graded rings was recently introduced by Nystedt, Ã–inert and Pinedo as a generalization of unital strongly graded rings. We give an example of an epsilon-strongly graded partial skew group ring such that the induced quotient group grading is not epsilon-strong. Moreover, we give necessary and sufficient conditions for the induced $G/N$-grading of an epsilon-strongly $G$-graded ring to be epsilon-strong. Our method involves relating different types of rings equipped with local units (s-unital rings, rings with sets of local units, rings with enough idempotents) with generalized epsilon-strongly graded rings.

open access

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2021-10-08Bibliographically approved1. The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner rings$(function(){PrimeFaces.cw("OverlayPanel","overlay1304154",{id:"formSmash:j_idt789:0:j_idt793",widgetVar:"overlay1304154",target:"formSmash:j_idt789:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. The structure of epsilon-strongly group graded rings$(function(){PrimeFaces.cw("OverlayPanel","overlay1546251",{id:"formSmash:j_idt789:1:j_idt793",widgetVar:"overlay1546251",target:"formSmash:j_idt789:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1231",{id:"formSmash:j_idt1231",widgetVar:"widget_formSmash_j_idt1231",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1284",{id:"formSmash:lower:j_idt1284",widgetVar:"widget_formSmash_lower_j_idt1284",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1285_j_idt1287",{id:"formSmash:lower:j_idt1285:j_idt1287",widgetVar:"widget_formSmash_lower_j_idt1285_j_idt1287",target:"formSmash:lower:j_idt1285:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});