Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt218",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1013",{id:"formSmash:j_idt1013",widgetVar:"widget_formSmash_j_idt1013",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

####

#### Search in DiVA

##### By author/editor

Lännström, Daniel
##### By organisation

Department of Mathematics and Natural Sciences
On the subject

Algebra and Logic
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1203_0_downloads',{id:'formSmash:j_idt1203:0:downloads',type:'bar',responsive:true,data:[[6,2,10,9,18,9,9,3,10,3]],title:"Downloads of File (FULLTEXT02)",axes:{yaxis: {label:"",min:0,max:30,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1304154'}],ticks:["Feb -23","Mar -23","Apr -23","May -23","Jun -23","Jul -23","Aug -23","Sep -23","Oct -23","Nov -23"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 377 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1206",{id:"formSmash:j_idt1206",widgetVar:"widget_formSmash_j_idt1206",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1209",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[2,4,2,2,3,4,2,6,12,1]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1304154'}],ticks:["Aug -22","Sep -22","Dec -22","Jan -23","Mar -23","Jun -23","Aug -23","Sep -23","Oct -23","Nov -23"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 809 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1302",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt197",{id:"formSmash:upper:j_idt197",widgetVar:"widget_formSmash_upper_j_idt197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt198_j_idt200",{id:"formSmash:upper:j_idt198:j_idt200",widgetVar:"widget_formSmash_upper_j_idt198_j_idt200",target:"formSmash:upper:j_idt198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner ringsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Karlskrona: Blekinge Tekniska Högskola, 2019.
##### Series

Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 7
##### Keywords [en]

group graded ring, epsilon-strongly graded ring, chain conditions, Leavitt path algebra, partial crossed product, Cuntz-Pimsner rings
##### National Category

Algebra and Logic
##### Identifiers

URN: urn:nbn:se:bth-17809ISBN: 978-91-7295-376-5 (print)OAI: oai:DiVA.org:bth-17809DiVA, id: diva2:1304154
##### Presentation

2019-05-15, G340, Valhallavägen 1, Karlskrona, 14:35 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt494",{id:"formSmash:j_idt494",widgetVar:"widget_formSmash_j_idt494",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt500",{id:"formSmash:j_idt500",widgetVar:"widget_formSmash_j_idt500",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt506",{id:"formSmash:j_idt506",widgetVar:"widget_formSmash_j_idt506",multiple:true});
##### Funder

The Crafoord Foundation, 20170843Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-06-11Bibliographically approved
##### List of papers

The research field of graded ring theory is a rich area of mathematics with many connections to e.g. the field of operator algebras. In the last 15 years, algebraists and operator algebraists have defined algebraic analogues of important operator algebras. Some of those analogues are rings that come equipped with a group grading. We want to reach a better understanding of the graded structure of those analogue rings. Among group graded rings, the strongly graded rings stand out as being especially well-behaved. The development of the general theory of strongly graded rings was initiated by Dade in the 1980s and since then numerous structural results have been established for strongly graded rings.

In this thesis, we study the class of epsilon-strongly graded rings which was recently introduced by Nystedt, Öinert and Pinedo. This class is a natural generalization of the well-studied class of unital strongly graded rings. Our aim is to lay the foundation for a general theory of epsilon-strongly graded rings generalizing the theory of strongly graded rings. This thesis is based on three articles. The first two articles mainly concern structural properties of epsilon-strongly graded rings. In the first article, we investigate a functorial construction called the induced quotient group grading. In the second article, using results from the first article, we generalize the Hilbert Basis Theorem for strongly graded rings to epsilon-strongly graded rings and apply it to Leavitt path algebras. In the third article, we study the graded structure of algebraic Cuntz-Pimsner rings. In particular, we obtain a partial classification of unital strongly, epsilon-strongly and nearly epsilon-strongly graded Cuntz-Pimsner rings up to graded isomorphism.

1. Induced quotient group gradings of epsilon-strongly graded rings$(function(){PrimeFaces.cw("OverlayPanel","overlay1304127",{id:"formSmash:j_idt563:0:j_idt567",widgetVar:"overlay1304127",target:"formSmash:j_idt563:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Chain conditions for epsilon-strongly graded rings with applications to Leavitt path algebras$(function(){PrimeFaces.cw("OverlayPanel","overlay1304134",{id:"formSmash:j_idt563:1:j_idt567",widgetVar:"overlay1304134",target:"formSmash:j_idt563:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. The graded structure of algebraic Cuntz-Pimsner rings$(function(){PrimeFaces.cw("OverlayPanel","overlay1304137",{id:"formSmash:j_idt563:2:j_idt567",widgetVar:"overlay1304137",target:"formSmash:j_idt563:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1231",{id:"formSmash:j_idt1231",widgetVar:"widget_formSmash_j_idt1231",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1284",{id:"formSmash:lower:j_idt1284",widgetVar:"widget_formSmash_lower_j_idt1284",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1285_j_idt1287",{id:"formSmash:lower:j_idt1285:j_idt1287",widgetVar:"widget_formSmash_lower_j_idt1285_j_idt1287",target:"formSmash:lower:j_idt1285:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});