Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hom-Lie structures on 3-dimensional skew symmetric algebras
Mälardalens högskola, SWE.
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.ORCID iD: 0000-0003-3931-7358
Mälardalens högskola, SWE.
2019 (English)In: Journal of Physics: Conference Series, Institute of Physics Publishing (IOPP), 2019, Vol. 1416, article id 012025Conference paper, Published paper (Refereed)
Abstract [en]

We describe the dimension of the space of possible linear endomorphisms that turn skew-symmetric three-dimensional algebras into Hom-Lie algebras. We find a correspondence between the rank of a matrix containing the structure constants of the bilinear product and the dimension of the space of Hom-Lie structures. Examples from classical complex Lie algebras are given to demonstrate this correspondence.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019. Vol. 1416, article id 012025
Series
Journal of Physics:Conference Series, ISSN 1742-6596 ; 1416
Keywords [en]
Hom-Lie algebras
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:bth-19022DOI: 10.1088/1742-6596/1416/1/012025ISI: 000562323800025OAI: oai:DiVA.org:bth-19022DiVA, id: diva2:1379925
Conference
XXVI International Conference on Integrable Systems and Quantum symmetries 8–12 July 2019, Prague, Czech Republic
Note

open access

Available from: 2019-12-17 Created: 2019-12-17 Last updated: 2020-09-17Bibliographically approved

Open Access in DiVA

Hom-Lie structures on 3-dimensional skew symmetric algebras(573 kB)295 downloads
File information
File name FULLTEXT01.pdfFile size 573 kBChecksum SHA-512
248bf7dc929668c769239a5ae801c45ecb1cb458fe4f0a06289218265c728744795a74ffe9976f33d89349c220ce07a319cd46e6958ddf0527929ca34a703c9d
Type fulltextMimetype application/pdf

Other links

Publisher's full texthttps://iopscience.iop.org/article/10.1088/1742-6596/1416/1/012025

Authority records

Richter, Johan

Search in DiVA

By author/editor
Richter, Johan
By organisation
Department of Mathematics and Natural Sciences
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar
Total: 295 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 315 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf