Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Learning character recognition with graph-based privileged information
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.ORCID iD: 0000-0002-2161-7371
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.ORCID iD: 0000-0001-9947-1088
2019 (English)In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, IEEE Computer Society , 2019, p. 1163-1168, article id 8978028Conference paper, Published paper (Refereed)
Abstract [en]

This paper proposes a pre-training method for neural network-based character recognizers to reduce the required amount of training data, and thus the human labeling effort. The proposed method transfers knowledge about the similarities between graph representations of characters to the recognizer by training to predict the graph edit distance. We show that convolutional neural networks trained with this method outperform traditional supervised learning if only ten or less labeled images per class are available. Furthermore, we show that our approach performs up to 33% better than a graph edit distance based recognition approach, even if only one labeled image per class is available. © 2019 IEEE.

Place, publisher, year, edition, pages
IEEE Computer Society , 2019. p. 1163-1168, article id 8978028
Keywords [en]
Character recognition, Convolutional neural networks, Graph matching, Learning using privileged information, Convolution, Graphic methods, Graph edit distance, Graph matchings, Graph representation, Labeled images, Method transfers, Pre-training, Training data
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-19275DOI: 10.1109/ICDAR.2019.00188Scopus ID: 2-s2.0-85079896010ISBN: 9781728128610 (print)OAI: oai:DiVA.org:bth-19275DiVA, id: diva2:1412241
Conference
15th IAPR International Conference on Document Analysis and Recognition, ICDAR, Sydney, 20 September 2019 through 25 September 2019
Part of project
Bigdata@BTH- Scalable resource-efficient systems for big data analytics, Knowledge Foundation
Funder
Knowledge Foundation, 20140032
Note

open access

Available from: 2020-03-05 Created: 2020-03-05 Last updated: 2021-10-07Bibliographically approved
In thesis
1. Data and Time Efficient Historical Document Analysis
Open this publication in new window or tab >>Data and Time Efficient Historical Document Analysis
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Over the last decades companies and government institutions have gathered vast collections of images of historical handwritten documents. In order to make these collections truly useful to the broader public, images suffering from degradations, such as faded ink, bleed through or stains, need to be made readable and the collections as a whole need to be made searchable. Readability can be achieved by separating text foreground from page background using document image binarization, while searchability by search string or by example image can be achieved through word spotting. Developing algorithms with reasonable binarization or word spotting performance is a difficult task. Additional challenges are to make these algorithms execute fast enough to process vast collections of images in a reasonable amount of time, and to enable them to learn from few labeled training samples. In this thesis, we explore heterogeneous computing, parameter prediction, and enhanced throughput as ways to reduce the execution time of document image binarization algorithms. We find that parameter prediction and mapping a heuristics based binarization algorithm to the GPU lead to an 1.7 and 3.5 increase in execution performance respectively. Furthermore, we identify for a learning based binarization algorithm using recurrent neural networks the number of pixels processed at once as way to trade off execution time with binarization quality. The achieved increase in throughput results in a 3.8 times faster overall execution time. Additionally, we explore guided machine learning (gML) as a possible approach to reduce the required amount of training data for learning based algorithms for binarization, character recognition and word spotting. We propose an initial gML system for binarization, which allows a user to improve an algorithm’s binarization quality by selecting suitable training samples. Based on this system, we identify and pursue three different directions, viz., formulation of a clear definition of gML, identification of an efficient knowledge transfer mechanism from user to learner, and automation of sample selection. We explore the Learning Using Privileged Information paradigm as a possible knowledge transfer mechanism by using character graphs as privileged information for training a neural network based character recognizer. Furthermore, we show that, given a suitable word image representation, automatic sample selection can help to reduce the amount of training data required for word spotting by up to 69%.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2020. p. 202
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 5
National Category
Computer Engineering Computer Sciences Computer Vision and Robotics (Autonomous Systems)
Research subject
Computer Systems Engineering
Identifiers
urn:nbn:se:bth-19529 (URN)978-91-7295-404-5 (ISBN)
Public defence
2020-09-03, J1630, Valhallavägen 1, Karlskrona, 13:15 (English)
Opponent
Supervisors
Funder
Knowledge Foundation, 20140032
Available from: 2020-05-29 Created: 2020-05-29 Last updated: 2020-12-14Bibliographically approved

Open Access in DiVA

fulltext(266 kB)473 downloads
File information
File name FULLTEXT01.pdfFile size 266 kBChecksum SHA-512
e726c0725b79e55e9e4236a7fe27bf93d0be911c0165d21c08b7ed2b7c17ceac23e6f899ab48ba2670fe5f056f08c08f687070a38c016653bc3ead6e88bf821f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Westphal, FlorianLavesson, NiklasGrahn, Håkan

Search in DiVA

By author/editor
Westphal, FlorianLavesson, NiklasGrahn, Håkan
By organisation
Department of Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 473 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 437 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf