Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chronological Age Assessment in Young Individuals Using Bone Age Assessment Staging and Nonradiological Aspects: Machine Learning Multifactorial Approach
Blekinge Institute of Technology, Faculty of Engineering, Department of Health.ORCID iD: 0000-0002-6752-017X
Karolinska University Hospital, SWE.
Blekinge Institute of Technology, Faculty of Engineering, Department of Health.ORCID iD: 0000-0003-4312-2246
Karolinska University Hospital, SWE.
Show others and affiliations
2020 (English)In: JMIR Medical Informatics, E-ISSN 2291-9694, Vol. 8, no 9, article id e18846Article in journal (Refereed) Published
Abstract [en]

Background: Bone age assessment (BAA) is used in numerous pediatric clinical settings, as well as in legal settings when entities need an estimate of chronological age (CA) when valid documents are lacking. The latter case presents itself as critical since the law is harsher for adults and granted rights along with imputability changes drastically if the individual is a minor. Traditional BAA methods suffer from drawbacks such as exposure of minors to radiation, do not consider factors that might affect the bone age and they mostly focus on a single region. Given the critical scenarios in which BAA can affect the lives of young individuals it is important to focus on the drawbacks of the traditional methods and investigate the potential of estimating CA through BAA.

Objective: This paper aims to investigate CA estimation through BAA in young individuals of 14 to 21 years with machine learning methods, addressing the drawbacks in the research using magnetic resonance imaging (MRI), assessment of multiple ROIs and other factors that may affect the bone age.

Methods: MRI examinations of the radius, distal tibia, proximal tibia, distal femur and calcaneus were carried out on 465 males and 473 females subjects (14-21 years). Measures of weight and height were taken from the subjects and a questionnaire was given for additional information (self-assessed Tanner Scale, physical activity level, parents' origin, type of residence during upbringing). Two pediatric radiologists assessed, independently, the MRI images as to their stage of bone development (blinded to age, gender and each other). All the gathered information was used in training machine learning models for chronological age estimation and minor versus adults classification (threshold of 18 years). Different machine learning methods were investigated.

Results: The minor versus adults classification produced accuracies of 90% and 84%, for male and female subjects, respectively, with high recalls for the classification of minors. The chronological age estimation for the eight age groups (14-21 years) achieved mean absolute errors of 0.95 years and 1.24 years for male and female subjects, respectively. However, for the latter lower error occurred only for the ages of 14 and 15.

Conclusions: This paper proposed to investigate the CA estimation through BAA using machine learning methods in two ways: minor versus adults classification and CA estimation in eight age groups (14-21 years), while addressing the drawbacks in the research on BAA. The first achieved good results, however, for the second case BAA showed not precise enough for the classification.

Place, publisher, year, edition, pages
JMIR Publications Inc. , 2020. Vol. 8, no 9, article id e18846
Keywords [en]
chronological age assessment, bone age, skeletal maturity, machine learning, magnetic resonance imaging, radius, distal tibia, proximal tibia, distal femur, calcaneus
National Category
Other Medical Sciences not elsewhere specified
Identifiers
URN: urn:nbn:se:bth-19500DOI: 10.2196/18846ISI: 000577388800006Scopus ID: 2-s2.0-85097465282OAI: oai:DiVA.org:bth-19500DiVA, id: diva2:1432308
Funder
Swedish National Board of Health and Welfare
Note

open access

Available from: 2020-05-26 Created: 2020-05-26 Last updated: 2022-04-29Bibliographically approved
In thesis
1. Machine learning applications in healthcare
Open this publication in new window or tab >>Machine learning applications in healthcare
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Healthcare is an important and high cost sector that involves many decision-making tasks based on the analysis of data, from its primary activities up till management itself. A technology that can be useful in an environment as data-intensive as healthcare is machine learning. This thesis investigates the application of machine learning in healthcare contexts as an applied health technology (AHT). AHT refers to application of scientific methods for the development of interventions targeting practical problems related to health and healthcare.

The two research contexts in this thesis regard two pivotal activities in the healthcare systems: diagnosis and prognosis. The diagnosis research context regards the age assessment of the young individuals, which aims to address the drawbacks in the bone age assessment research, investigating new age assessment methods. The prognosis research context regards the prognosis of dementia, which aims to investigate prognostic estimates for older individuals who came to develop the dementia disorder, in a time frame of 10 years. Machine learning applications were shown to be useful in both research contexts.

In the diagnosis research context, study I summarized the state of the art evidence in the area of bone age assessment with the use of machine learning, identifying both automated and non-automated approaches for age assessment. Study II investigated a non-automated approach based on the radiologists' assessment and study III investigated an automated approach based on deep learning. Both studies used magnetic resonance imaging. The results showed that the radiologists' assessment as input was not precise enough for the estimation of age. However, the deep learning method was able to extract more useful features from the images and provided better diagnostic performance for the age assessment.

In the research context of prognosis, study IV conducted a review on the relevant evidence in on the prognosis of dementia with machine learning techniques, identifying a focus on the research on neuroimaging studies dedicated to validating biomarkers for pharmaceutical research. Study V proposed a multifactorial decision tree approach for the prognosis of dementia in older individuals as to their development or not of dementia in 10 years. Achieving consistent performance results, it provided an interpretable prognostic model identifying possible modifiable and non-modifiable risk factors and possible patient subgroups of importance for the dementia research.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2020. p. 202
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 6
Keywords
Machine learning, Healthcare, Diagnosis, Prognosis, Age assessment, Bone age assessment, Dementia, Applied health technology
National Category
Other Medical Sciences
Research subject
Applied Health Technology
Identifiers
urn:nbn:se:bth-19513 (URN)978-91-7295-405-2 (ISBN)
Public defence
2020-09-16, 14:00
Opponent
Supervisors
Available from: 2020-05-29 Created: 2020-05-28 Last updated: 2021-01-27Bibliographically approved

Open Access in DiVA

fulltext(441 kB)163 downloads
File information
File name FULLTEXT01.pdfFile size 441 kBChecksum SHA-512
85ff64a09de700c452a7c9eddcb617186936033c8c8d7d508ff4cfda70c331dd070faa1030a80d60a7c39136340d42bf83da68eb0a5c5534adc1ba3cbc3dbd59
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Moraes, Ana Luiza DalloraSanmartin Berglund, JohanBoldt, MartinAnderberg, Peter

Search in DiVA

By author/editor
Moraes, Ana Luiza DalloraSanmartin Berglund, JohanBoldt, MartinAnderberg, Peter
By organisation
Department of HealthDepartment of Computer Science
In the same journal
JMIR Medical Informatics
Other Medical Sciences not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar
Total: 163 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 570 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf