Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Solution providers are transitioning from product-centric models to service-oriented solutions. This shift has led to the rise of Product-Service Systems (PSS), which offer a holistic approach by integrating physical products with associated services. However, the inherent complexity and collaborative nature of PSS development present a significant challenge: information gathering, analysis, and knowledge building. This is further amplified in the early stages of PSS development due to data challenges such as uncertainty, ambiguity, and complexity. This complicates informed decision-making, potentially leading to the risk of sub-optimal outcomes and impacting the success of final offerings.
This research proposes an AI-powered data analysis approach to address these data challenges and augment the decision-making process of PSS development. The focus is on supporting early-stage decision-making, as decisions made at this stage greatly impact the success of final solutions. The research investigates how data can be utilized and visualized to extract actionable insights, ultimately facilitating informed decision-making.
The presented research demonstrates that AI-powered data analysis effectively supports informed decision-making in early-stage PSS development. By extracting actionable insights from complex data, handling data limitations, and enabling informed strategic decisions, knowledge sharing, and collaboration are facilitated among stakeholders. Furthermore, integrating AI with visualization tools fosters knowledge building and a deeper understanding of system behavior, ultimately leading to more successful PSS solutions. The efficacy of AI-powered data analysis for handling diverse data types across application domains is demonstrated, potentially leading to benefits such as a deeper understanding of system behavior and proactive solution strategies. These advancements contribute to developing decision support systems specifically for PSS development.
Overall, this research demonstrates the efficacy of AI-powered data analysis in overcoming data challenges and empowering decision-makers in early-stage PSS development. This translates to more informed choices, leading to the creation of successful and efficient PSS solutions.
Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2024
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2024:11
Keywords
Product-Service System (PSS), Artificial Intelligence, Early-stage Decision Support, Data Challenges, Informed Decision-making
National Category
Mechanical Engineering Other Engineering and Technologies not elsewhere specified
Research subject
Mechanical Engineering
Identifiers
urn:nbn:se:bth-26162 (URN)978-91-7295-484-7 (ISBN)
Public defence
2024-06-14, J1630, Campus Gräsvik, Karlskrona, 09:30 (English)
Opponent
Supervisors
2024-05-082024-05-072024-05-23Bibliographically approved