Compliant foil gas seal is one of the advanced cylindrical gas seal technologies and can be commonly used in the secondary flow system of an aero-engine. It can enhance the dynamic stability of the aero-engine by meeting the steady requirements of the aero-engine seal system. To evaluate the performance of compliant foil gas seal, the steady performance of the gas seal is firstly analyzed to predict the sealing efficiency and obtain the pressure distribution of the gas seal in the compressible flow field. Then, the effects of the operating parameters on the rotordynamic coefficients are analyzed using the finite differential method. It can be used to predict the operation performance of the aero-engine and prepare for the optimization and test rig of compliant foil gas seal on the T-shaped groove. © 2020 by the authors.
Open access
The current research has been supported by the China Scholarship Council (grant no. 201708740009).