Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
STEM Education on Equal Terms Through the Flipped Laboratory Approach
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.
Linnaeus University, SWE.
Linnaeus University, SWE.
2021 (English)In: Cross Reality and Data Science in Engineering / [ed] Auer M.E.,May D., Springer , 2021, Vol. 1231, p. 46-62Conference paper, Published paper (Refereed)
Abstract [en]

The educational phenomena studied in this paper is remote-controlled physical laboratory environments and their applicability in upper secondary school physics education. In order to gain a better understanding of the situation and needs regarding laboratory activities in the upper secondary school, eight physics teachers were interviewed at six different schools. This revealed that the resources for laboratory activities vary between schools and may be inconsistent with the Swedish National Agency for Education curriculum. Furthermore, 165 upper secondary school students answered a questionnaire survey regarding subject preferences, program choices, views on technology and self-ability, and approach to technology and technology-related situations. The acquired knowledge provides a basis concerning the needs and conditions of teaching and learning within the subject of physics. This new knowledge motivates the development of the Flipped laboratory concept that is introduced in this paper, based on remote-controlled physical laboratories, for upper secondary school. © 2021, Springer Nature Switzerland AG.

Place, publisher, year, edition, pages
Springer , 2021. Vol. 1231, p. 46-62
Series
Advances in Intelligent Systems and Computing, ISSN 2194-5357, E-ISSN 2194-5365 ; 17
Keywords [en]
Flipped laboratory, Physics education, Remote laboratory, STEM education, Upper secondary school, Curricula, Laboratories, Remote control, STEM (science, technology, engineering and mathematics), Surveys, Education curriculums, Physical laboratory, Questionnaire surveys, Secondary schools, Swedishs, Teaching and learning, Distance education
National Category
Pedagogy
Identifiers
URN: urn:nbn:se:bth-20394DOI: 10.1007/978-3-030-52575-0_4ISI: 000772176100004Scopus ID: 2-s2.0-85090093319ISBN: 9783030525743 (print)OAI: oai:DiVA.org:bth-20394DiVA, id: diva2:1466369
Conference
17th International Conference on Remote Engineering and Virtual Instrumentation, REV 2020; Athens; United States; 26 February 2020 through 28 February 2020
Available from: 2020-09-11 Created: 2020-09-11 Last updated: 2023-08-27Bibliographically approved
In thesis
1. Remote laboratories in STEM education: Strategies and methods for implementation
Open this publication in new window or tab >>Remote laboratories in STEM education: Strategies and methods for implementation
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During a substantial part of their time young people of today live in an online world. The medial evolution has also influenced education and today much research work concerns the transfer of the physical world into the online one. One example is laboratories in science, technology, engineering, and mathematics (STEM) education that are available in online rooms. They enable students to be at home in front of a computer and on-screen watch and operate the physical equipment in the laboratory at school. 

It is a general agreement that laboratory lessons are necessary in subjects such as physics, chemistry and biology. Physical experiments provide a great way for students to learn more about nature and its possibilities as well as limitations. Experimental work can be provided by laboratories in three different categories; 1) hands-on, 2) remote and 3) simulated.

This thesis addresses how to implement remote laboratories as a teaching methodology. It presents examples of upper secondary school students’ experimental work and their evaluation of remote laboratories regarding usability, sense of reality and technical problems. 

In order to gain a better understanding of the situation and needs regarding laboratory activities in an upper secondary school, eight physics teachers were interviewed at six different schools. Furthermore, 165 upper secondary school students answered a questionnaire survey regarding subject preferences, program choices, views on technology and self-ability, and their approach to technology and technology-related situations. This thesis also describes another education approach where academia, industry, and research institutes cooperate around the development and implementation of master level courses. The pedagogical approach utilized in these master level courses has been flipped classroom.

In this thesis, the usage of remotely controlled laboratories in physics education at an upper secondary school and a university are addressed. The main objective of this project is to investigate the feasibility of using the Virtual Instruments System in Reality (VISIR) technology for remotely controlled laboratories, developed at Blekinge Institute of Technology, in upper secondary schools. The laboratory setup can be shared and utilized almost 24/7, thus reducing the associated costs and eliminating time restrictions.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2023
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 12
Keywords
Education, Engineering, Experimental work, Physics, Remote Laboratories, VISIR
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Didactics Signal Processing
Research subject
Applied Signal Processing
Identifiers
urn:nbn:se:bth-25329 (URN)978-91-7295-464-9 (ISBN)
Public defence
2023-10-13, J1630, Blekinge Tekniska Högskola, 371 79 Karlskrona, Karlskrona, 09:15 (English)
Opponent
Supervisors
Available from: 2023-08-29 Created: 2023-08-27 Last updated: 2023-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Claesson, LenaNilsson, Kristian

Search in DiVA

By author/editor
Claesson, LenaNilsson, Kristian
By organisation
Department of Mathematics and Natural Sciences
Pedagogy

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf