This paper addresses the problem of mutual interference between automotive radars. The rapid growth of automotive and commercial radar systems on the market does not only facilitate new applications, e.g., advanced driver assistant systems, but also put demands on the possibilities for co-existence, i.e. cohabitant systems. For military radar systems, various jammer and interference mitigation methods have been extensively analyzed and evaluated for decades. However, until now, the co-existence and influence of jamming/interference have almost been ignored for the commercial radar business. A Generalized Inner Product, GIP, test based outlier detector and interference estimation is presented here, which suppress the interferences only in those Directions of Arrival, DOA, and time domain portions where the nuisance signals appear. We will denote this GIP test based Interference Detector and Suppression as the GIDS method. Using GIDS, the target detection performance for the specific interference DOA will merely have a small loss instead of being completely suppressed, e.g., sample matrix inversion implementation of spatial nulling. The proposed technique is robust and does not rely on any calibration for the interference cancellation. Based on simulation and experimental data, we have shown that without losing target detection performance, we achieved up to about 30 dB enhancement for the Signal to Interference and Noise Ratio.
open access