Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A system for heart sounds classification
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.ORCID iD: 0000-0003-4399-5477
Gdansk University of Technology, POL.
Gdansk University of Technology, POL.
2014 (English)In: PLOS ONE, E-ISSN 1932-6203, Vol. 9, no 11, p. 1-12, article id e112673Article in journal (Refereed) Published
Abstract [en]

The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability.

Place, publisher, year, edition, pages
Public library of science , 2014. Vol. 9, no 11, p. 1-12, article id e112673
Keywords [en]
Heart, Heart Sounds, Humans, Phonocardiography, Reproducibility of Results, Signal Processing, Computer-Assisted, Support Vector Machines, Systolic Murmurs
National Category
Medical and Health Sciences Medical Laboratory and Measurements Technologies Signal Processing
Research subject
Applied Signal Processing; Software Engineering
Identifiers
URN: urn:nbn:se:bth-21394DOI: 10.1371/journal.pone.0112673Scopus ID: 2-s2.0-84911488769OAI: oai:DiVA.org:bth-21394DiVA, id: diva2:1554993
Note

open access

Available from: 2021-05-17 Created: 2021-05-17 Last updated: 2021-06-30Bibliographically approved
In thesis
1. Sensors and Algorithms in Industry 4.0: Security and Health Preservation Applications
Open this publication in new window or tab >>Sensors and Algorithms in Industry 4.0: Security and Health Preservation Applications
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Globalisation and technological digitisation have triggered an Industry 4.0. revolution.  The core of this revolution is autonomisation of complex processes, which require expert knowledge. The technical foundations of Industry 4.0 are IoT, Big Data and AI technologies. Nowadays, autonomous systems are widely used to increase human and environmental safety and to prevent health degradation.  Such non-industrial, life related applications demand high reliability as well as precision and accuracy, which challenge engineering science. 

The thesis objective is to provide suitable solutions for non-invasive, automated, and autonomous systems used for life protection and health maintenance. The proposed solutions enable non-invasive measurements by means of vision and acoustic sensors. The presented methods and systems are designed based on an analytical assessment of existing technologies and algorithms. New hardware solutions, signal and data processing methods, as well as classification and decision-making algorithms are proposed. Where required, additional customisations and modifications are applied. The systems and methods presented have been modelled and rigorously validated, and subsequently implemented and verified in a real environment.  

The scope of the thesis includes the assessment of functional requirements, precision, accuracy and reliability of life-related technological systems. It covers an analytical evaluation of proposed methods and algorithms of filtration, feature extraction, also detection, localization, identification, and classification of objects. The application fields are health monitoring, nature observation and facilitating collaborative frameworks in modern factories. 

The thesis specifically focuses on methods and algorithms of autonomous decision making concerning the risk of heart disease, the threat of fatal collision of rare birds with man-made structures and the prevention of accidents in modern robotised factories. It also deals with the implementation of the Industry 4.0 fundamentals, which are smart sensing, IoT and AI methods optimised to improve the system performance in a broad sense. The applied distributed computing method and machine-to-machine communication are aimed at limiting the data stream at an early stage of the decision-making process, and thus ensure the system’s cost-effectiveness. From the thesis, one can understand how the Industry 4.0 paradigm can contribute to autonomisation of compound processes and to increase system performance, without compromising its affordability.

The thesis is divided into two parts. The first, Prolegomena provides an overview of the sensors and algorithms applicable to industrial safety along with human health and nature preservation. This part also visualizes the relationships and interactions among the articles comprising the second part named Papers. In general, each of the enclosed six papers deals with the problem of autonomisation of complex processes in real-time and in a regular environment.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2021
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 4
Keywords
Acoustic Sensor, Artificial Intelligence, Autonomisation, Classification, Detection, Feature Extraction, Health Preservation, Identification, Internet of Things, Machine Learning, Multi-Sensor System, Safety System, Vision System
National Category
Engineering and Technology Signal Processing Computer Systems
Research subject
Systems Engineering
Identifiers
urn:nbn:se:bth-21387 (URN)978-91-7295-424-3 (ISBN)
Public defence
2021-09-10, Zoom, Campus Gräsvik, Karlskrona, 13:15 (English)
Opponent
Supervisors
Available from: 2021-05-11 Created: 2021-05-10 Last updated: 2021-09-20Bibliographically approved

Open Access in DiVA

fulltext(1727 kB)127 downloads
File information
File name FULLTEXT01.pdfFile size 1727 kBChecksum SHA-512
022d0609c20193cf34748140857951891ec41d041de9b5e8097992aa069ac473f4d7a22fadb4c155d143263c0ddf911a7cfdc4663d0ed527bbf7e85f012a64d3
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Gradolewski, Dawid

Search in DiVA

By author/editor
Gradolewski, Dawid
By organisation
Department of Mathematics and Natural Sciences
In the same journal
PLOS ONE
Medical and Health SciencesMedical Laboratory and Measurements TechnologiesSignal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 127 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf