Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimization of Heterogeneous Parallel Computing Systems using Machine Learning
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.
2021 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Background: Heterogeneous parallel computing systems utilize the combination of different resources CPUs and GPUs to achieve high performance and, reduced latency and energy consumption. Programming applications that target various processing units requires employing different tools and programming models/languages. Furthermore, selecting the most optimal implementation, which may either target different processing units (i.e. CPU or GPU) or implement the various algorithms, is not trivial for a given context. In this thesis, we investigate the use of machine learning to address the selection problem of various implementation variants for an application running on a heterogeneous system.

Objectives: This study is focused on providing an approach for optimization of heterogeneous parallel computing systems at runtime by building the most efficient machine learning model to predict the optimal implementation variant of an application.

Methods: The six machine learning models KNN, XGBoost, DTC, Random Forest Classifier, LightGBM, and SVM are trained and tested using stratified k-fold on the dataset generated from the matrix multiplication application for square matrix input dimension ranging from 16x16 to 10992x10992.

Results: The results of each machine learning algorithm’s finding are presented through accuracy, confusion matrix, classification report for parameters precision, recall, and F-1 score, and a comparison between the machine learning models in terms of accuracy, run-time training, and run-time prediction are provided to determine the best model.

Conclusions: The XGBoost, DTC, SVM algorithms achieved 100% accuracy. In comparison to the other machine learning models, the DTC is found to be the most suitable due to its low time required for training and prediction in predicting the optimal implementation variant of the heterogeneous system application. Hence the DTC is the best suitable algorithm for the optimization of heterogeneous parallel computing.

Place, publisher, year, edition, pages
2021. , p. 54
Keywords [en]
Application, Heterogeneous systems, Parallel computing, Machine learning, Optimization
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-21834OAI: oai:DiVA.org:bth-21834DiVA, id: diva2:1573760
Subject / course
DV1478 Bachelor Thesis in Computer Science
Educational program
DVGDT Bachelor Qualification Plan in Computer Science 60.0 hp
Supervisors
Examiners
Available from: 2021-06-28 Created: 2021-06-27 Last updated: 2021-06-28Bibliographically approved

Open Access in DiVA

fulltext(902 kB)759 downloads
File information
File name FULLTEXT02.pdfFile size 902 kBChecksum SHA-512
39e6df9b8d3b29b91e002907a0a1d3521840234054dbb145971bdae6cf7e4e3787a984b40773617342efd39c57900000be21c94e3e400a67f4b21ad7aa52bc12
Type fulltextMimetype application/pdf

By organisation
Department of Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 759 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 3031 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf