The present paper considers emerging Internet of Things (IoT) applications and proposes a Long Short Term Memory (LSTM) based neural network for predicting the end of the broadcasting period under slotted CSMA (Carrier Sense Multiple Access) based MAC protocol and Energy Harvesting enabled Wireless Networks (EHWNs). The goal is to explore LSTM for minimizing the number of missed nodes and the number of broadcasting time-slots required to reach all the nodes under periodic broadcast operations. The proposed LSTM model predicts the end of the current broadcast period relying on the Root Mean Square Error (RMSE) values generated by its output, which (the RMSE) is used as an indicator for the divergence of the model. As a case study, we enhance our already developed broadcast policy, ADAPCAST by applying the proposed LSTM. This allows to dynamically adjust the end of the broadcast periods, instead of statically fixing it beforehand. An artificial data-set of the historical data is used to feed the proposed LSTM with information about the amounts of incoming, consumed, and effective energy per time-slot, and the radio activity besides the average number of missed nodes per frame. The obtained results prove the efficiency of the proposed LSTM model in terms of minimizing both the number of missed nodes and the number of time-slots required for completing broadcast operations. © 2021 IEEE.