Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Background: Every country has seen an increase in motorcycle accidents over the years due to social and economic differences as well as regional variations in transportation circumstances. One common mode of transportation for those in the middle class is a motorbike.  Every motorbike rider is legally required to wear a helmet when driving a bike. However, some people on bikes used to ignore their safety, which resulted in them violating traffic rules by driving the bike without a helmet. The policeman tried to address this issue manually, but it was ineffective and proved to be quite challenging in practical circumstances. Therefore, automating this procedure is essential if we are to effectively enforce road safety. As a result, an automated system was created employing a variety of techniques, including Convolutional Neural Networks (CNN), the Haar Cascade Classifier, the You Only Look Once (YOLO), the Single Shot multi-box Detector (SSD), etc. In this study, YOLOv3 and Haar Cascade Classifier are used to compare motorcycle helmet and license plate detection. 

Objectives: This thesis aims to compare the machine learning algorithms that detect motorcycles’ license plates and helmets. Here, the Haar Cascade Classifier and YOLO algorithms are used on the US License Plates and Helmet Detection datasets to train the models. The accuracy is obtained in detecting the helmets and license plates of the motorcycles and analyzed. 

Methods: The experiment method is chosen to answer the research question. An experiment is performed to find the accuracy of the models in detecting the helmets and license plates of motorcycles. The datasets utilized for this are from Kaggle, which included 764 pictures of two distinct classes, i.e., with and without a helmet, along with 447 unique license plate images. Before training the model, preprocessing techniques are performed on US License Plates and Helmet Detection datasets. Now the datasets are divided into test and train datasets where the test data set size is considered to be 20% and the train data set size is 80%. The models are trained using 80% pre-processed training datasets and using the Haar Cascade Classifier and YOLOv3 algorithms. An observation is made by giving the 20% test data to the trained models. Finally, the prediction results of these two models are recorded and the accuracy is measured by generating a confusion matrix.  

Results: The efficient and best algorithm for detecting the helmets and license plates of motorcycles is identified from the experiment method. The YOLOv3 algorithm is considered more accurate in detecting motorcycles' helmets and license plates based on the results. 

Conclusions: Models are trained using Haar Cascade and YOLOv3 algorithms on US License Plates and Helmet Detection training datasets. The accuracy of the models in detecting the helmets and license plates of motorcycles is checked by using the testing datasets. The model trained using the YOLOv3 algorithm has high accuracy; hence, the Neural network-based YOLOv3 technique is thought to be the best and most efficient.

Place, publisher, year, edition, pages
2022.
Keywords [en]
Accuracy, Haar Cascade Classifier, Helmet Detection, License Plate Detection, YOLOv3 algorithm.
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-23809OAI: oai:DiVA.org:bth-23809DiVA, id: diva2:1707864
Subject / course
DV1478 Bachelor Thesis in Computer Science
Educational program
DVGDT Bachelor Qualification Plan in Computer Science 60.0 hp
Supervisors
Examiners
Available from: 2022-11-02 Created: 2022-11-01 Last updated: 2022-11-02Bibliographically approved

Open Access in DiVA

A comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles(1524 kB)2660 downloads
File information
File name FULLTEXT02.pdfFile size 1524 kBChecksum SHA-512
33e5453dc5bf7035b531c6087fe2ef92b7028ef2ebe5638ff03ec6bc29fc689f342752415b77f8dc9ff2b6d4f5c298cc45744f28882d94985484b87150a85d2a
Type fulltextMimetype application/pdf

By organisation
Department of Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2660 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf