Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
A large amount of data is generated from fields like IoT, smart monitoring applications, etc., raising demand for suitable data analysis and mining techniques. Data produced through such systems have many distinct characteristics, like continuous generation, evolving nature, multi-source origin, and heterogeneity, and in addition are usually not annotated. Clustering is an unsupervised learning technique used to group and analyze unlabeled data. Conventional clustering algorithms are unsuitable for dealing with data with the mentioned characteristics due to memory, computational constraints, and their inability to handle the heterogeneous and evolving nature of the data. Therefore, novel clustering approaches are needed to analyze and interpret such challenging data.
This thesis focuses on building and studying advanced clustering algorithms that can address the main challenges of today's real-world data: evolving and heterogeneous nature. An evolving clustering approach capable of continuously updating the generated clustering solution in the presence of new data is initially proposed, which is later extended to address the challenges of multi-view data applications. Multi-view or multi-source data presents the studied phenomenon or system from different perspectives (views) and can reveal interesting knowledge that is invisible when only one view is considered and analyzed. This has motivated us to continue exploring data from different perspectives in several other studies of this thesis. Domain shift is another common problem when data is obtained from various devices or locations, leading to a drop in the performance of machine learning models if they are not adapted to the current domain (device, location, etc.). The thesis explores the domain adaptation problem in a resource-constraint way using cluster integration techniques. A new hybrid clustering technique for analyzing the heterogeneous data is also proposed. It produces homogeneous groups, facilitating continuous monitoring and fault detection.
The algorithms and techniques proposed in this thesis are evaluated on various data sets, including real-world data from industrial partners in domains like smart building systems, smart logistics, and performance monitoring of industrial assets. The obtained results demonstrated the robustness of the algorithms for modeling, analyzing, and mining evolving data streams and/or heterogeneous data. They can adequately adapt single and multi-view clustering models by continuously integrating newly arriving data.
Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2024
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2024:06
Keywords
Domain Adaptation, Evolving Clustering, Heterogeneous Data, Multi-View Clustering, Streaming Data
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:bth-26098 (URN)978-91-7295-479-3 (ISBN)
Public defence
2024-05-22, J1630, Campus Gräsvik, Karlskrona, 09:00 (English)
Opponent
Supervisors
2024-04-102024-04-092024-04-22Bibliographically approved