Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancing User Requirement Intake Using Natural Language Processing
Blekinge Institute of Technology.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2023.
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:bth-24358OAI: oai:DiVA.org:bth-24358DiVA, id: diva2:1742132
Subject / course
PA2534 Master's Thesis (120 credits) in Software Engineering
Educational program
PAADA Master Qualification Plan in Software Engineering 120,0 hp
Examiners
Available from: 2023-03-08 Created: 2023-03-08 Last updated: 2023-03-25Bibliographically approved

Open Access in DiVA

Enhancing User Requirement Intake Using Natural Language Processing(2374 kB)528 downloads
File information
File name FULLTEXT01.pdfFile size 2374 kBChecksum SHA-512
621e8c1ff3e5bb622f44bb4f9d0bc834574be5d249ae29f30a6f6384ebd02c2d90f03bb1a3b0a31babe9b5b73f146a5d85713dfeaaa5890b5272d5e1c419302f
Type fulltextMimetype application/pdf

By organisation
Blekinge Institute of Technology
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 528 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 494 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf