Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detection of Underwater Trash Objectsusing Deep Learning Algorithms
Blekinge Institute of Technology.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2023. , p. 66
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-25308OAI: oai:DiVA.org:bth-25308DiVA, id: diva2:1789963
Subject / course
DV2572 Master´s Thesis in Computer Science
Educational program
DVADA Master Qualification Plan in Computer Science
Supervisors
Examiners
Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-08-21Bibliographically approved

Open Access in DiVA

Detection of Underwater Trash Objects using Deep Learning Algorithms(3499 kB)1512 downloads
File information
File name FULLTEXT02.pdfFile size 3499 kBChecksum SHA-512
d67416284f91d5811f46b063e8d28b5130a911e0c6b7cc3bbfa1ed4d0632279c6630a98df640d7767eee855df835b62347ad8d1c8a423753e30c1853eea1693a
Type fulltextMimetype application/pdf

By organisation
Blekinge Institute of Technology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1515 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 225 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf