Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient CNN-based Object IDAssociation Model for Multiple ObjectTracking
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science. Qualcomm.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2023. , p. 70
Keywords [en]
Machine Learning, Deep Learning, Multiple Object Tracking
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:bth-25525OAI: oai:DiVA.org:bth-25525DiVA, id: diva2:1808307
External cooperation
Qualcomm
Subject / course
DV2572 Master´s Thesis in Computer Science
Educational program
DVACO Master's program in computer science 120,0 hp
Presentation
2023-09-27, 09:00 (English)
Supervisors
Examiners
Available from: 2023-10-31 Created: 2023-10-30 Last updated: 2023-10-31Bibliographically approved

Open Access in DiVA

Efficient CNN-based Object ID Association Model for Multiple Object Tracking(6397 kB)88 downloads
File information
File name FULLTEXT02.pdfFile size 6397 kBChecksum SHA-512
b3d4f8b5f4d06dc4ea10e80e3c7ddd4bde08cadb43be5a745eb654ea82c990d1590838acf08433bbb01a10914c5519f9ed559929f602206d54344365d5c74e74
Type fulltextMimetype application/pdf

By organisation
Department of Computer Science
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 88 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf