Four vector intelligent metaheuristic for data optimization Show others and affiliations
2024 (English) In: Computing, ISSN 0010-485X, E-ISSN 1436-5057, Vol. 106, no 7, p. 2321-2359Article in journal (Refereed) Published
Abstract [en]
Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024.
Place, publisher, year, edition, pages Springer, 2024. Vol. 106, no 7, p. 2321-2359
Keywords [en]
Artificial intelligence, Data optimization, Exploitation, Exploration, Global optima, Swarm intelligence, Economic and social effects, Natural resources exploration, Optimization, Complex optimization problems, Complex problems, Four-vector, Globaloptimum, Local minimums, Metaheuristic, Optimization metaheuristic, Swarm intelligence algorithms
National Category
Computer Sciences
Identifiers URN: urn:nbn:se:bth-26172 DOI: 10.1007/s00607-024-01287-w ISI: 001204703500001 Scopus ID: 2-s2.0-85190817750 OAI: oai:DiVA.org:bth-26172 DiVA, id: diva2:1856472
2024-05-072024-05-072024-08-05 Bibliographically approved