Open this publication in new window or tab >>Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]
Background: Traditionally, assessing the degree of ossification in the epiphyseal plate for growth plate development relies on manual evaluation, which can be inefficient due to the complexities of the distal femoral epiphysis anatomy. Existing methods lack efficient detection techniques.
Method: This study proposes an AI-based decision support system, designed within a product-service system (PSS) framework, to automate ossification assessment and detection of the distal femoral epiphysis in knee magnetic resonance imaging (MRI) data. The system leverages advanced machine learning techniques, specifically two Convolutional Neural Networks (CNNs), combined with computer vision techniques. This intelligent system analyzes MRI slices to predict the optimal slice for analysis and identify variations in the degree of ossification within individual datasets.
Results: The proposed method's effectiveness is demonstrated using a set of T2-weighted gradient echo grayscale knee MRI data. The system successfully detects the complex anatomy of the distal femoral epiphysis, revealing variations in the degree of ossification ranging from completely closed/open to fully open/closed regions.
Conclusions: This study presents a robust and efficient AI-based method, integrated within a PSS framework, for measuring the degree of ossification in the distal femoral epiphysis. This approach automates ossification assessment, providing valuable insights for clinical decision-making by clinicians and forensic practitioners. The PSS framework ensures seamless integration of the AI technology into existing workflows.
Keywords
Degree of Ossification, Artificial Intelligence, Decision Support System, Product-Service Systems, Knee MRI
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:bth-26160 (URN)
2024-05-032024-05-032024-05-08Bibliographically approved