Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Validation of Machine Learning and Visualization based Static Code Analysis Technique
Blekinge Institute of Technology, School of Computing.
Blekinge Institute of Technology, School of Computing.
2009 (English)Independent thesis Advanced level (degree of Master (Two Years))Student thesisAlternative title
Validering av Machine Learning and Visualization bygger statisk kod analysteknik (Swedish)
Abstract [en]

Software security has always been an afterthought in software development which results into insecure software. Companies rely on penetration testing for detecting security vulnerabilities in their software. However, incorporating security at early stage of development reduces cost and overhead. Static code analysis can be applied at implementation phase of software development life cycle. Applying machine learning and visualization for static code analysis is a novel idea. Technique can learn patterns by normalized compression distance NCD and classify source code into correct or faulty usage on the basis of training instances. Visualization also helps to classify code fragments according to their associated colors. A prototype was developed to implement this technique called Code Distance Visualizer CDV. In order test the efficiency of this technique empirical validation is required. In this research we conduct series of experiments to test its efficiency. We use real life open source software as our test subjects. We also collected bugs from their corresponding bug reporting repositories as well as faulty and correct version of source code. We train CDV by marking correct and faulty version of code fragments. On the basis of these trainings CDV classifies other code fragments as correct or faulty. We measured its fault detection ratio, false negative and false positive ratio. The outcome shows that this technique is efficient in defect detection and has low number of false alarms.

Abstract [sv]

Software trygghet har alltid varit en i efterhand inom mjukvaruutveckling som leder till osäker mjukvara. Företagen är beroende av penetrationstester för att upptäcka säkerhetsproblem i deras programvara. Att införliva säkerheten vid tidigt utvecklingsskede minskar kostnaderna och overhead. Statisk kod analys kan tillämpas vid genomförandet av mjukvaruutveckling livscykel. Tillämpa maskininlärning och visualisering för statisk kod är en ny idé. Teknik kan lära mönster av normaliserade kompressionständning avstånd NCD och klassificera källkoden till rätta eller felaktig användning på grundval av utbildning fall. Visualisering bidrar också till att klassificera code fragment utifrån deras associerade färger. En prototyp har utvecklats för att genomföra denna teknik som kallas Code Avstånd VISUALISERARE CDV. För att testa effektiviteten hos denna teknik empirisk validering krävs. I denna forskning vi bedriver serie experiment för att testa dess effektivitet. Vi använder verkliga livet öppen källkod som vår test ämnen. Vi har också samlats in fel från deras motsvarande felrapportering förråd samt fel och rätt version av källkoden. Vi utbildar CDV genom att markera rätt och fel version av koden fragment. På grundval av dessa träningar CDV klassificerar andra nummer fragment som korrekta eller felaktiga. Vi mätt sina fel upptäckt förhållandet falska negativa och falska positiva förhållandet. Resultatet visar att den här tekniken är effektiv i fel upptäckt och har låga antalet falsklarm.

Place, publisher, year, edition, pages
2009. , p. 62
Keywords [en]
Static code analysis, NCD classification, security vulnerabilities, early defect detection, software validation
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-4347Local ID: oai:bth.se:arkivexD925E834B04665C4C12575D7004F588DOAI: oai:DiVA.org:bth-4347DiVA, id: diva2:831682
Uppsok
Technology
Supervisors
Note
waqasmah@gmail.com +46762316108Available from: 2015-04-22 Created: 2009-06-16 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

fulltext(693 kB)118 downloads
File information
File name FULLTEXT01.pdfFile size 693 kBChecksum SHA-512
ed5ee04deaee58ae6b5439f5276d164bec145a01be3e3073a606c28b0166ba4413a508b635e6b2dc6157ae3556f08d1558e88902561e1fdd143180212ef93eff
Type fulltextMimetype application/pdf

By organisation
School of Computing
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 118 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 319 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf