Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Boosted-Window Ensemble
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
2014 (English)Independent thesis Advanced level (degree of Master (One Year))Student thesis
Abstract [en]

Context. The problem of obtaining predictions from stream data involves training on the labeled instances and suggesting the class values for the unseen stream instances. The nature of the data-stream environments makes this task complicated. The large number of instances, the possibility of changes in the data distribution, presence of noise and drifting concepts are just some of the factors that add complexity to the problem. Various supervised-learning algorithms have been designed by putting together efficient data-sampling, ensemble-learning, and incremental-learning methods. The performance of the algorithm is dependent on the chosen methods. This leaves an opportunity to design new supervised-learning algorithms by using different combinations of constructing methods. Objectives. This thesis work proposes a fast and accurate supervised-learning algorithm for performing predictions on the data-streams. This algorithm is called as Boosted-Window Ensemble (BWE), which is invented using the mixture-of-experts technique. BWE uses Sliding Window, Online Boosting and incremental-learning for data-sampling, ensemble-learning, and maintaining a consistent state with the current stream data, respectively. In this regard, a sliding window method is introduced. This method uses partial-updates for sliding the window on the data-stream and is called Partially-Updating Sliding Window (PUSW). The investigation is carried out to compare two variants of sliding window and three different ensemble-learning methods for choosing the superior methods. Methods. The thesis uses experimentation approach for evaluating the Boosted-Window Ensemble (BWE). CPU-time and the Prediction accuracy are used as performance indicators, where CPU-time is the execution time in seconds. The benchmark algorithms include: Accuracy-Updated Ensemble1 (AUE1), Accuracy-Updated Ensemble2 (AUE2), and Accuracy-Weighted Ensemble (AWE). The experiments use nine synthetic and five real-world datasets for generating performance estimates. The Asymptotic Friedman test and the Wilcoxon Signed-Rank test are used for hypothesis testing. The Wilcoxon-Nemenyi-McDonald-Thompson test is used for performing post-hoc analysis. Results. The hypothesis testing suggests that: 1) both for the synthetic and real-wrold datasets, the Boosted Window Ensemble (BWE) has significantly lower CPU-time values than two benchmark algorithms (Accuracy-updated Ensemble1 (AUE1) and Accuracy-weighted Ensemble (AWE). 2) BWE returns similar prediction accuracy as AUE1 and AWE for synthetic datasets. 3) BWE returns similar prediction accuracy as the three benchmark algorithms for the real-world datasets. Conclusions. Experimental results demonstrate that the proposed algorithm can be as accurate as the state-of-the-art benchmark algorithms, while obtaining predictions from the stream data. The results further show that the use of Partially-Updating Sliding Window has resulted in lower CPU-time for BWE as compared with the chunk-based sliding window method used in AUE1, AUE2, and AWE.

Place, publisher, year, edition, pages
2014. , p. 39
Keywords [en]
Stream Mining, Supervised-learning by classification, Online learning algorithms, Ensemble Methods, Boosting
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-5658Local ID: oai:bth.se:arkivexEB18525181F2B041C1257D82004DBDD4OAI: oai:DiVA.org:bth-5658DiVA, id: diva2:833048
Uppsok
Technology
Supervisors
Available from: 2015-04-22 Created: 2014-10-31 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

fulltext(895 kB)351 downloads
File information
File name FULLTEXT01.pdfFile size 895 kBChecksum SHA-512
3b369f9fe175e3043c8e217de3619217617a59b95a4f86216f00f5b2ab73c8580badfc17d87ecd84600028b7dff7eca6321c385aa59f15b2011555b6ea1accae
Type fulltextMimetype application/pdf

By organisation
Department of Computer Science and Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 351 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 233 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf