The 3G and 4G networks have drastically improved availability and quality in data transmission for bandwidth hungry services such as video streaming and location-based services. As 3G networks are very widely deployed, there exists increased capacity requirement and transport channel allocation to simultaneous users under a particular cell. Due to this reason, adequate resources are not available, which in turn degrades both service quality and user experienced quality. This research aims at understanding the characteristics of buffer filling during dedicated channel (DCH) transmission under fixed bit-rate assumptions on a per-user level taking different services into consideration. Furthermore, the resource utilisation in terms of empty buffer durations and user throughput achieved during dedicated channel transmission are also analysed for different data services existing in the mobile networks. The traces are collected from a real network and characteristics of the traffic are analysed prior to understanding its buffer filling in Radio Network Controller (RNC) during downlink data transmission. Furthermore, the buffer is modelled with some series of assumptions on channel bit-rates and simulations are performed taking single user scenario into consideration, for different services with the help of obtained traces as input to the buffer. This research is helpful in understanding the RNC buffer filling for different services, in turn yielding possible understanding on the existing transport channel switching scenario. With the help of analysing the buffer filling for different services and transport channel utilisation, we learn that most of the data services show low DCH utilisation of approximately around 20% and also found to have 80% of the total DCH session duration with empty buffer, causing sub-optimal radio resource utilization.