The problem of robust and invariant representation of places is being addressed. A place recognition technique is proposed followed by an application to a semantic topological mapping. The proposed technique is evaluated on a robot localization database which consists of a large set of images taken under various weather conditions. The results show that the proposed method can robustly recognize the places and is invariant to geometric transformations, brightness changes and noise. The comparative analysis with the state-of-the-art semantic place description methods show that the method outperforms the competing methods and exhibits better average recognition rates.