Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Fuzzy-Rough Sets Based Compact Rule Induction Method for Classifying Hybrid Data
Blekinge Institute of Technology, School of Engineering, Department of Mathematics and Natural Sciences.ORCID iD: 0000-0002-9920-7946
Blekinge Institute of Technology, School of Engineering, Department of Mathematics and Natural Sciences.
2012 (English)Conference paper (Refereed)
Abstract [en]

Rule induction plays an important role in knowledge discovery process. Rough set based rule induction algorithms are characterized by excellent accuracy, but they lack the abilities to deal with hybrid attributes such as numeric or fuzzy attributes. In real-world applications, data usually exists with hybrid formats, and thus a unified rule induction algorithm for hybrid data learning is desirable. We firstly model different types of attributes in equivalence relationship, and define the key concepts of block, minimal complex and local covering based on fuzzy rough sets model, then propose a rule induction algorithm for hybrid data learning. Furthermore, in order to estimate performance of the proposed method, we compare it with state-of-the-art methods for hybrid data learning. Comparative studies indicate that rule sets extracted by this method can not only achieve comparable accuracy, but also get more compact rule sets. It is therefore concluded that the proposed method is effective for hybrid data learning.

Place, publisher, year, edition, pages
Chengdu: Springer , 2012.
Keyword [en]
Knowledge discovery, classification, rough sets, rule induction, hybrid data
National Category
Computer Science
Identifiers
URN: urn:nbn:se:bth-6926DOI: 10.1007/978-3-642-31900-6_9Local ID: oai:bth.se:forskinfoC7C69056237C7188C1257A6E00163E39ISBN: 978-3-642-31899-3 (print)OAI: oai:DiVA.org:bth-6926DiVA: diva2:834481
Conference
7th International Conference on Rough Sets and Knowledge Technology
Available from: 2013-07-02 Created: 2012-09-03 Last updated: 2016-09-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rakus-Andersson, ElisabethBai, Guohua
By organisation
Department of Mathematics and Natural Sciences
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf