Accurate estimates of cutting forces are important in the evaluation of different cutting tool geometries and concepts. However, dynamic influences from the measurement system affect the result, which can make the obtained cutting force data erroneous and misleading. This article presents a method to obtain an inverse filter which compensates for the dynamic influences of the measurement system. Using this approach, unwanted dynamic effects of the measurement system can be counteracted, making it possible to retain information related to the cutting forces contained in the high frequency region. The advantage of the proposed method is illustrated by comparing simulated, inverse- and low-pass filtered forces to unfiltered forces under different cutting conditions. The results show that inverse filtering increases the usable frequency range of the force dynamometer and thereby provide more reliable results compared to both low-pass and unfiltered forces.