Many mathematical models formulated in terms of non-linear differential equations can successfully be treated and solved by Lie group methods. Lie group analysis is especially valuable in investigating non-linear differential equations, for its algorithms act here as reliably as for linear cases. The aim of this article is to provide the group theoretical modeling of internal waves in the ocean. The approach is based on a new concept of conservation laws that is utilized to systematically derive the conservation laws of non-linear equations describing propagation of internal waves in the ocean. It was shown in our previous publication that uni-directional internal wave beams can be obtained as invariant solutions of non-linear equations of motion. The main goal of the present publication is to thoroughly analyze another physically significant exact solution, namely the rotationally symmetric solution and the energy carried by this solution. It is shown that the rotationally symmetric solution and its energy are presented by means of a bounded oscillating function.