Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance Assessment of Cooperative Relay Networks with Advanced Radio Transmission Techniques
Blekinge Institute of Technology, School of Computing.
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the past decade, cooperative communications has been emerging as a pertinent technology for the current and upcoming generations of mobile communication infrastructure. The indispensable benefits of this technology have motivated numerous studies from both academia and industry on this area. In particular, cooperative communications has been developed as a means of alleviating the effect of fading and hence improve the reliability of wireless communications. The key idea behind this technique is that communication between the source and destination can be assisted by several intermediate nodes, so-called relay nodes. As a result, cooperative communication networks can enhance the reliability of wireless communications where the transmitted signals are severely impaired because of fading. In addition, through relaying transmission, communication range can be extended and transmit power of each radio terminal can be reduced as well. The objective of this thesis is to analyze the system performance of cooperative relay networks integrating advanced radio transmission techniques and using the two major relaying protocols, i.e., decode-and-forward (DF) and amplify-and-forward (AF). In particular, the radio transmission techniques that are considered in this thesis include multiple-input multiple-output (MIMO) systems and orthogonal space-time block coding (OSTBC) transmission, adaptive transmission, beamforming transmission, coded cooperation, and cognitive radio transmission. The thesis is divided into an introduction section and six parts based on peer-reviewed journal articles and conference papers. The introduction provides the readers with some fundamental background on cooperative communications along with several key concepts of cognitive radio systems. In the first part, performance analysis of cooperative single and multiple relay networks using MIMO and OSTBC transmission is presented wherein the diversity gain, coding gain, outage probability, symbol error rate, and channel capacity are assessed. It is shown that integrating MIMO and OSTBC transmission into cooperative relay networks provides full diversity gain. In the second part, the performance benefits of MIMO relay networks with OSTBC and adaptive transmission strategies are investigated. In the third part, the performance improvement with respect to outage probability of coded cooperation applied to opportunistic DF relay networks over conventional cooperative networks is shown. In the fourth part, the effects of delay of channel state information feedback from the destination to the source and co-channel interference on system performance is analyzed for beamforming AF relay networks. In the fifth part, cooperative diversity is investigated in the context of an underlay cognitive AF relay network with beamforming. In the sixth part, finally, the impact of the interference power constraint on the system performance of multi-hop cognitive AF relay networks is investigated.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Institute of Technology , 2013. , p. 200 p.
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2
Keywords [en]
Cooperative communications, cognitive relay networks, multiple-input multiple-output (MIMO), space-time block codes, spatial diversity
National Category
Mathematical Analysis Computer Sciences Signal Processing
Identifiers
URN: urn:nbn:se:bth-00549Local ID: oai:bth.se:forskinfoCB6FE98E3568F619C1257B0900528BEAISBN: 978-91-7295-248-5 (print)OAI: oai:DiVA.org:bth-00549DiVA, id: diva2:834576
Available from: 2013-03-13 Created: 2013-02-05 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

fulltext(7991 kB)999 downloads
File information
File name FULLTEXT01.pdfFile size 7991 kBChecksum SHA-512
573942637a6c4f6afb70fd3f87e6774c08a4a2843d102d58c5f14dedac1fa531aa432f8aedc137429c767c45fe2e8029ac12e9fbb782a178f835a7a8ef01679f
Type fulltextMimetype application/pdf

Authority records

Phan, Hoc

Search in DiVA

By author/editor
Phan, Hoc
By organisation
School of Computing
Mathematical AnalysisComputer SciencesSignal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 999 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 241 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf