We analyze the outage performance of a two-way fixed gain amplify-and-forward (AF) relay system with beamforming, arbitrary antenna correlation, and co-channel interference (CCI). Assuming CCI at the relay, we derive the exact individual user outage probability in closed-form. Additionally, while neglecting CCI, we also investigate the system outage probability of the considered network, which is declared if any of the two users is in transmission outage. Our results indicate that the position of the relay in this system plays an important role in determining the user as well as the system outage probability via such parameters as signal-to-noise imbalance, antenna configuration, spatial correlation, and CCI power. To render further insights into the effect of antenna correlation and CCI on the diversity and array gains, an asymptotic expression which tightly converges to exact results is also derived.