We study the nonlinear incompressible non-viscous fluid flows within a thin rotating atmospheric shell that serve as a simple mathematical description of an atmospheric circulation caused by the temperature difference between the equator and the poles. The model is also superimposed by a particular stationary flow which, under the assumption of no friction and a distribution of temperature dependent only upon latitude, models the zonal west-to-east flows in the upper atmosphere between the Ferrel and Polar cells. Owing to the Coriolis effects, the resulting achievable meteorological flows correspond to the asymptotical stable flows that are being translated along the equatorial plane. The exact solutions in terms of elementary functions are found by using Lie group methods.