Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Time-dependent exact solutions of the nonlinear Kompaneets equation
Responsible organisation
2010 (English)In: Journal of Physics A: Mathematical and Theoretical, ISSN 1751-8113, E-ISSN 1751-8121, Vol. 43, no 50Article in journal (Refereed) Published
Abstract [en]

Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.

Place, publisher, year, edition, pages
IOP Publishing Ltd , 2010. Vol. 43, no 50
Keyword [en]
Kompaneets photon diffusion equation, symmetries, group invariant solution, exact solution
National Category
Mathematics Mathematical Analysis
Identifiers
URN: urn:nbn:se:bth-7530DOI: 10.1088/1751-8113/43/50/502001Local ID: oai:bth.se:forskinfoDF432B0916EFB916C12578B70058F354OAI: oai:DiVA.org:bth-7530DiVA: diva2:835154
Note
Online at stacks.iop.org/JPhysA/43/502001Available from: 2012-09-18 Created: 2011-06-22 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

fulltext(133 kB)69 downloads
File information
File name FULLTEXT01.pdfFile size 133 kBChecksum SHA-512
5742440144f95bcb923f8c328f0ab7fbe5fcf8eba91e09995c44dc8457ec263603ffd9b2ab491acf84cbfcece4044875282cd02f1ca7768d935d33c44f93c98a
Type fulltextMimetype application/pdf

Other links

Publisher's full text
In the same journal
Journal of Physics A: Mathematical and Theoretical
MathematicsMathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 69 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf