Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Localized Galerkin Estimates for Boundary Integral Equations on Lipschitz Domanis
Responsible organisation
1992 (English)In: SIAM Journal on Mathematical Analysis, Vol. 5, no 23, 751-764 p.Article in journal (Refereed) PublishedAlternative title
Lokaliserade Galerkin estimat för randvärdesintegralekvationer för Lipschitzområden (Swedish)
Abstract [en]

The Galerkin method is studied for solving the boundary integral equations associated with the Laplace operator on nonsmooth domains. Convergence is established with a condition on the meshsize, which involves the local curvature on certain approximating domains. Error estimates are also proved, and the results are generalized to systems of equations.

Abstract [sv]

Galerkinmetoden studeras för att lösa ingegralekvationer med randvärden för Laplacepoperatorn för non-smooth områden. Konvergens visas med ett villkor på nätstorleken., vilket består av den lokala krökningen för approximerande områden. Feluppskattningar är härledda, och resultaten generaliserar för system av ekvationer.

Place, publisher, year, edition, pages
SIAM , 1992. Vol. 5, no 23, 751-764 p.
Keyword [en]
Galerkin, Laplace equation, Lipschitz domain
National Category
Mathematical Analysis Applied Mechanics
Identifiers
URN: urn:nbn:se:bth-7817Local ID: oai:bth.se:forskinfo903AF51ACACD262CC125773C004E23CFOAI: oai:DiVA.org:bth-7817DiVA: diva2:835479
Available from: 2012-09-18 Created: 2010-06-08 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lennerstad, Håkan
Mathematical AnalysisApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

Total: 211 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf