Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detection of Spyware by Mining Executable Files
Responsible organisation
2010 (English)Conference paper, Published paper (Refereed) Published
Abstract [en]

Spyware represents a serious threat to confidentiality since it may result in loss of control over private data for computer users. This type of software might collect the data and send it to a third party without informed user consent. Traditionally two approaches have been presented for the purpose of spyware detection: Signature-based Detection and Heuristic-based Detection. These approaches perform well against known Spyware but have not been proven to be successful at detecting new spyware. This paper presents a Spyware detection approach by using Data Mining (DM) technologies. Our approach is inspired by DM-based malicious code detectors, which are known to work well for detecting viruses and similar software. However, this type of detector has not been investigated in terms of how well it is able to detect spyware. We extract binary features, called n-grams, from both spyware and legitimate software and apply five different supervised learning algorithms to train classifiers that are able to classify unknown binaries by analyzing extracted n-grams. The experimental results suggest that our method is successful even when the training data is scarce.

Place, publisher, year, edition, pages
Krakow: IEEE Computer Society , 2010.
Keywords [en]
Spyware Detection, Data Mining, Malicious Code, Feature Extraction
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-7837DOI: 10.1109/ARES.2010.105ISI: 000278197800042Local ID: oai:bth.se:forskinfo22AC5EFE2DB008C0C12576EC0066347AOAI: oai:DiVA.org:bth-7837DiVA, id: diva2:835504
Conference
The Fifth International Conference on Availability, Reliability and Security (ARES 2010)
Available from: 2012-09-18 Created: 2010-03-20 Last updated: 2024-01-09Bibliographically approved
In thesis
1. Automated Malware Detection and Classification Using Supervised Learning
Open this publication in new window or tab >>Automated Malware Detection and Classification Using Supervised Learning
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Malware has been one of the key concerns for Information Technology security researchers for decades. Every year, anti-malware companies release alarming statistics suggesting a continuous increase in the number and types of malware.  This is mainly due to the constant development of new and more sophisticated malicious functionalities, propagation vectors, and infection tactics for malware. To combat this ever-evolving threat, anti-malware companies analyze thousands of malicious samples on a daily basis, either manually or through semi-automated means, to identify their type (whether it's a variant or zero-day) and family. After the analysis, signature databases or rule databases of anti-malware products are updated in order to detect known malware.  However, due to the ever-growing capabilities of malware, the malware analysis process is challenging and requires significant human effort. As a result, researchers are focusing on data-driven approaches based on machine learning to develop intelligent malware detectors with high accuracy. Specifically, they are focused on extracting static features from malware in the form of n-grams for experimental purposes. However, the previous research is inconclusive in terms of optimal feature representation and detection accuracy.

The primary objective of this thesis is to present state-of-the-art automated techniques for detecting and classifying malware using supervised learning algorithms. In particular, the focus is on two critical aspects of supervised learning-based malware detection: optimal feature representation and improved detection accuracy. Malware detection can be accomplished using two methods: static analysis, which extracts patterns without executing malware, and dynamic analysis, which captures behaviors through executing malware. This thesis focuses on static analysis instead of dynamic analysis because static analysis requires fewer computing resources. An additional benefit of static analysis is that present-day malware cannot evade it. To achieve the goals of this thesis, two new feature representations for static analysis are proposed. Furthermore, three customized ensembles are introduced to enhance malware detection accuracy, and their feasibility is experimentally demonstrated.  

The experiments incorporate customized malware data sets including Spyware, Adware, Scareware, and Android malware samples, and public malware data sets from Microsoft's having samples from nine distinct malware families. Artificially generated data sets are employed to mitigate class imbalance issues and represent inter-family and intra-family examples. Reverse engineering is performed to transform the data sets as feature data sets using both byte code and assembly language instructions. Further, existing and new feature representations along with various feature selection algorithms and feature fusion techniques are explored. To enhance detection accuracy, different decision theories from social choice theory, such as veto and consensus, are integrated into customized ensembles. The experimental results indicate that the proposed methods are capable of detecting known and zero-day malware. The proposed ensembles are also tested on the UCI public data sets, such as Forest CoverType, and the results demonstrate their effectiveness in classification. Further, these methods are designed to be portable and adaptable to different operating systems, and they can also be scaled for multi-class malware detection.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2024
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 3
Keywords
Malware Detection, Android Malware, Machine Learning, Static Malware Analysis, Cyber Security, Ensemble learning, Supervised Learning, Feature Selection
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:bth-25793 (URN)978-91-7295-475-5 (ISBN)
Public defence
2024-01-31, J1630, Campus Karlskrona, 13:00 (English)
Opponent
Supervisors
Available from: 2024-01-09 Created: 2024-01-09 Last updated: 2024-01-11Bibliographically approved

Open Access in DiVA

fulltext(300 kB)860 downloads
File information
File name FULLTEXT01.pdfFile size 300 kBChecksum SHA-512
40dc075ff0c279ccd2a2c294f4686f99842491acc4d115f067066fc3007a2a68fdf0d180f84f43983a97a1946e1f5aff9430f9a1624d1b7e605b429153bd76b2
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Lavesson, Niklas

Search in DiVA

By author/editor
Lavesson, Niklas
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 860 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 176 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf