Vibration problems during metal cutting occur frequently in the manufacturing industry. The vibration level depends on many different parameters such as the material type, the dimensions of the workpiece, the rigidity of tooling structure, the cutting data, and the operation mode. In milling, the cutting process subjects the tool to vibrations, and having a milling tool holder with a long overhang will most likely result in high vibration levels. As a consequence of these vibrations, the tool life is reduced, the surface finishing becomes poor, and disturbing sound appears. In this report, an investigation of the dynamic properties of a milling tool holder with moderate overhang has been carried out by means of experimental modal analysis and vibration analysis during the operating mode. Both the angular vibrations of the rotating tool and the vibrations of the machine tool structure were examined during milling. Also, vibration of the workpiece and the milling machine was examined during cutting. This re- port focuses on identifying the source/sources of the dominant milling vibration components and on determining which of these vibrations that are related to the structural dynamic properties of the milling tool holder.