We study discrete dynamical systems of the kind h(x) = x + g(x), where g(x) is a monic irreducible polynomial with coefficients in the ring of integers of a p-adic field K. The dynamical systems of this kind, having attracting fixed points, can in a natural way be divided into equivalence classes, and we investigate whether something can be said about the number of those equivalence classes, for a certain degree of the polynomial g(x).
Vi studerar diskreta dynamiska system över de p-adiska heltalen. Dessa system som har attraherande fixpunkter kan på ett naturligt sätt delas in i ekvivalensklasser. Vad kan vi säga om antalet sådana ekvivalensklasser?