Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Subalgebras to a Wiener type algebra of pseudo-differential operators
Responsible organisation
2001 (English)In: Annales de l'Institut Fourier, ISSN 0373-0956, E-ISSN 1777-5310, Vol. 5, no 5, p. 1347-1383Article in journal (Refereed) Published
Abstract [en]

We study general continuity properties for an increasing family of Banach spaces S-W(P) of classes for pseudo-differential symbols, where S-W(infinity) = S-w was introduced by J. Sjostrand in 1993. We prove that the operators in Op(S-W(P)) are Schattenvon Neumann operators of order p on L-2. We prove also that Op(S-w(p))Op(S-w(r)) subset of Op(S-w(r)) and S-w(p) . S-w(q) subset of S-w(r) provided 1/p+1q = 1/r. If instead 1/p + 1/q = 1+1/r, then S-w(p) w* S-w(q) subset of S-w(r). By modifying the definition of the S-w(p) -spaces, one also obtains symbol classes related to the S(m, g) spaces.

Place, publisher, year, edition, pages
ST MARTIN D HERES CEDEX: ANNALES DE L INSTITUT FOURIER , 2001. Vol. 5, no 5, p. 1347-1383
Keywords [en]
pseudo-differential operators, Weyl calculus, Schatten-von Neumann classes, admissible functions, Holder's inequality, Young's inequality
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:bth-8109ISI: 000174292900008Local ID: oai:bth.se:forskinfoD9843A0BAB78120EC12575B0002157A6OAI: oai:DiVA.org:bth-8109DiVA, id: diva2:835798
Available from: 2012-09-18 Created: 2009-05-08 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

In the same journal
Annales de l'Institut Fourier
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf