Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the classical and quantum evolution of Lagrangian half-forms in phase space
Responsible organisation
1999 (English)In: ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, ISSN 0246-0211, p. 547-573Article in journal (Refereed) Published
Abstract [en]

The local expressions of a Lagrangian half-form on a quantized Lagrangian submanifold of phase space are the wavefunctions of quantum mechanics. We show that one recovers Maslov's asymptotic formula for the solutions to Schrodinger's equation if one transports these half-forms by the flow associated with a Hamiltonian H. We then consider the case when the Hamiltonian flow is replaced by the flow associated with the Bohmian, and are led to the conclusion that the use of Lagrangian half-forms leads to a quantum mechanics on phase space. (C) Elsevier, Paris.

Place, publisher, year, edition, pages
PARIS: GAUTHIER-VILLARS/EDITIONS ELSEVIER , 1999. p. 547-573
National Category
Geometry
Identifiers
URN: urn:nbn:se:bth-8143ISI: 000081314300003Local ID: oai:bth.se:forskinfoB5A383822077AACFC12575B0002121FBOAI: oai:DiVA.org:bth-8143DiVA, id: diva2:835832
Available from: 2012-09-18 Created: 2009-05-08 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Geometry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 274 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf