In this paper the general magma equation modelling a melt flow in the Earth's mantle is discussed. Applying the new theorem on nonlocal conservation laws [Ibragimov NH. A new conservation theorem. J Math Anal Appl 2007;333(1):311-28] and using the symmetries of the model equation nonlocal conservation laws are computed. In accordance with Ibragimov [Ibragimov NH. Quasi-self-adjoint differential equations. Preprint in Archives of ALGA, vol. 4, BTH, Karlskrona, Sweden: Alga Publications; 2007. p. 55-60, ISSN: 1652-4934] it is shown that the general magma equation is quasi-self-adjoint for arbitrary m and n and self-adjoint for n = -m. These important properties are used for deriving local conservation laws. © 2008 Elsevier B.V. All rights reserved.