S. Lie found in 1883 the general form of all second-order ordinary differential equations transformable to the linear equation by a change of variables and proved that their solution reduces to integration of a linear third-order ordinary differential equation. He showed that the linearizable equations are at most cubic in the first-order derivative and described a general procedure for constructing linearizing transformations by using an over-determined system of four equations. We present here a simple geometric proof of the theorem, known as Lie's linearization test, stating that the compatibility of Lie's four auxiliary equations furnishes a necessary and sufficient condition for linearization.