The boring bar is one of the most widely used types of tool holder in metal cutting operations. The turning process subjects the tool to vibration, and cutting in deep workpiece cavities is likely to result in high vibration levels. The consequences of such vibration levels are generally; reduced tool life, poor surface finishing and disturbing sound. Internal turning frequently requires a long and slender boring bar in order to machine inside a cavity, and the vibrations generally become highly correlated with the fundamental bending mode of the boring bar. Different methods can be applied to reduce the vibrations, the implementation of the most efficient and stable methods require in depth knowledge concerning the dynamic properties of the tooling system. Furthermore, the interface between the boring bar and the clamping house has a significant influence on the dynamic properties of the clamped boring bar. In this paper different cases of boundary condition of the boring bar are presented partly analytically but also experimentally. This paper focuses on dynamic properties of a boring bar that arise due to different clamping conditions of the boring bar introduced by a clamping house commonly used in the manufacturing industry.