Use of mobile equipment has increased exponentially over the last decade. As use becomes more widespread so too does the demand for new functionalities. The limited memory and computational power of many mobile devices has proven to be a challenge resulting in many innovative solutions and a number of new standards. Despite this, there is often a requirement for additional enhancement to improve quality. The focus of this thesis work has been to perform enhancement within two different areas; audio or speech encoding and video encoding/decoding. The audio enhancement section of this thesis addresses the well known problem in the GSM system with an interfering signal generated by the switching nature of TDMA cellular telephony. Two different solutions are given to suppress such interference internally in the mobile handset. The first method involves the use of subtractive noise cancellation employing correlators, the second uses a structure of IIR noth filters. Both solutions use control algorithms based on the state of the communication between the mobile handset and the base station. The video section of this thesis presents two post-filters and one pre-filter. The two post-filters are designed to improve visual quality of highly compressed video streams from standard, block-based video codecs by combating both blocking and ringing artifacts. The second post-filter also performs sharpening. The pre-filter is designed to increase the coding efficiency of a standard block based video codec. By introducing a pre-processing algorithm before the encoder, the amount of camera disturbance and the complexity of the sequence can be decreased, thereby increasing coding efficiency.