Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of Spatial Dynamic Properties of the Boring Bar by Means of Finite Element Model: Comparison with Experimental Modal Analysis and Euler-Bernoulli Model
Show others and affiliations
Responsible organisation
2006 (English)Conference paper, Published paper (Refereed) Published
Abstract [en]

In metal cutting the boring operation is known to be one of the most troublesome regarding vibration. Boring bars are frequently subjected to vibrations originated from the load applied by the workpiece material deformation process. These vibrations are easily excited due to the boring bars general geometric dimensions, i.e. large length to diameter ratio. Large overhang is usually required to perform internal boring operation and is a consequence the vibration may frequently reach extremely high levels, which result in a poor surface finish, reduced tool life and annoying noise level in the working environment. The vibration problem is directly related to the first bending modes of a boring bar. Therefore investigations of the boring bar’s spatial dynamic properties are of a great importance. The results from experimental modal analysis show that a conventional analytical approach - calculation of boring bar eigenfrequencies using an Euler-Bernoulli model - results in rough estimates. This can be explained by existing nonlinearities introduced e.g. in the areas of contact between the boring bar and the clamping bolts as well as the clamping house, which is not considered in the analytical model where the boring bar instead is assumed to be rigidly clamped. Therefore the estimation of the eigenfrequencies and eigenmodes of a boring bar based on a 3-D finite element model of the clamped boring bar incorporating contact between the bar and the bolts respective the clamping house is a more beneficial strategy. This paper addresses the estimation of the boring bar’s first eigenfrequencies and corresponding eigenmodes based on the 3-D finite element model. The results are compared with results obtained both from experimental modal analysis and an analytical Euler-Bernoulli model.

Place, publisher, year, edition, pages
Vienna, 2006.
Keywords [en]
boring bar vibrations, modal analysis, metal cutting
National Category
Signal Processing Applied Mechanics
Identifiers
URN: urn:nbn:se:bth-9777Local ID: oai:bth.se:forskinfo91AFBF4E97D0D8CBC12571D100306E79OAI: oai:DiVA.org:bth-9777DiVA, id: diva2:837716
Conference
The Thirteenth International Congress on Sound and Vibration (ICSV13)
Available from: 2012-09-18 Created: 2006-08-21 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Håkansson, LarsClaesson, Ingvar

Search in DiVA

By author/editor
Håkansson, LarsClaesson, Ingvar
Signal ProcessingApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf