The boring operation is a cumbersome manufacturing process marred by noise and vibration related problems. The manufacturing industry is having trouble with these kinds of metal cutting operations. There exist several approaches to reduce the vibrations in cutting operations in general. Passive tuned dampers in boring bars have been commercially available for some time. An active solution is likely to be more robust to changes in the spectral content, where the passive counterpart have a small operable area, the active solution is able to adapt to these kinds of changes. Active vibration control in boring operations has been proven to be feasible. The algorithm used in the successful experiments was the feedback filtered X-LMS algorithm. This algorithm does however not guarantee a stable behavior, but incorporating a leakage factor will make the algorithm more robust. Power spectral density of boring bar vibration of real cutting experiments show that the leaky filtered X-LMS algorithm is a possible candidate to be a suitable control algorithm. Nyquist diagrams of the controller during operation show that the stability is increased significantly.