The internal turning operation has a history of being a cumbersome metal working process as vibration in boring operations is usually inevitable. In this article, the deflection shapes and/or mode shapes as well as the resonance frequencies of a boring bar have been put under scrutiny. Three methods have been used in order to investigate dynamic properties of a clamped boring bar: a theoretical Euler-Bernoulli beam model, an experimental modal analysis and an operating deflection shape analysis. \\ The results indicate a correlation between the shapes of the deflection shapes and/or mode shapes produced by the three different analysis methods. On the other hand, the orientation of the forced deflection shapes and/or mode shapes and the resonance frequencies demonstrates differences between the three methods. During continuous cutting, it is demonstrated that the bending motion of the first two resonance frequencies is to a large extent in the cutting speed direction.