In the turning operation chatter or vibration is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynamic motion between cutting tool and workpiece may be partially solved. However, by active control of machine-tool vibration, a further reduction of the dynamic motion between cutting tool and workpiece can be achieved. It was found that adaptive feedback control based on the filtered-x LMS-algorithm, enables a reduction of the vibration by up to 40 dB at 1.5 kHz and by approximately 40 dB at 3 kHz. The active control performed a broadband attenuation of the sound pressure level by up to 35 dB. A significant improvement of the workpiece surface was also observed.