Two models of an anharmonic oscillator that have exact solutions are considered. The equationsdescribe motion in a “modulus” potential well with a singularity at the minimum and in a double symmetricwell with a singularity at the vertex of the potential barrier. The forms and spectra of the oscillations are computed. Forced oscillations caused by a random force are analyzed on the basis of equations with Langevinsources. Nonstationary solutions of the corresponding Fokker–Planck equations are constructed. Thesesolutions describe